【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,點D為邊AC上一點,連接BD,作AHBD的延長線于點H,過點CCE//AHBD交與點E,連結(jié)AE并延長與BC交于點F.現(xiàn)有如下4個結(jié)論:①∠HAD=CBD;②△ADE∽△BFE;③CE·AH=HD·BE;④若DAC中點,則,其中正確結(jié)論有( )個.

A.1B.2C.3D.4

【答案】B

【解析】

中,利用三角形的內(nèi)角和定理判斷①,由相似三角形逆推得到與已知條件互相矛盾的結(jié)論判斷②,利用已知條件證明判斷③,利用相似三角形與平行線分線段成比例判斷④.

解: ACB=90°,AHBD

所以①正確.

在△ADE與△BFE中,若△ADE∽△BFE,

的中垂線,

相交,

所以②錯誤,

所以③正確,

顯然:不平行,

所以

錯誤,故④錯誤.

故選B

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AC是⊙O的直徑,弦BDAOE,連接BC,過點OOFBCF,若BD=8cm,AE=2cm,則OF的長度是( 。

A. 3cm B. cm C. 2.5cm D. cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】四個全等的直角三角形按圖示方式圍成正方形ABCD,過各較長直角邊的中點作垂線,圍成面積為S的小正方形EFGH.已知AMRtABM較長直角邊,AM2EF,則正方形ABCD的面積為( 。

A. 14SB. 13SC. 12SD. 11S

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(定義學習)

定義:如果四邊形有一組對角為直角,那么我們稱這樣的四邊形為對直四邊形

(判斷嘗試)

在①梯形;②矩形:③菱形中,是對直四邊形的是哪一個. (填序號)

(操作探究)

在菱形ABCD中,于點E,請在邊ADCD上各找一點F,使得以點A、E、C、F組成的四邊形為對直四邊形,畫出示意圖,并直接寫出EF的長,

(實踐應用)

某加工廠有一批四邊形板材,形狀如圖所示,若AB=3米,AD=1米,

.現(xiàn)根據(jù)客戶要求,需將每張四邊形板材進一步分割成兩個等腰三角形板材和一個對直四邊形"板材,且這兩個等腰三角形的腰長相等,要求材料充分利用無剩余.求分割后得到的等腰三角形的腰長,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,ABAC,以AB為直徑的⊙OBC于點D.延長CA交⊙O于點E,BH是⊙O的切線,作CHBH.垂足為H

1)求證:BEBH

2)若AB5,tanCBE2,求BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在我市雨污分流工程中,甲、乙兩個工程隊共同承擔茅洲河某段720米河道的清淤任務,已知甲隊每天能完成的長度是乙隊每天能完成長度的2倍,且甲工程隊清理300米河道所用的時間比乙工程隊清理200米河道所用的時間少5天.

1)求甲、乙兩工程隊每天各能完成多少米的清淤任務;

2)若甲隊每天清淤費用為2萬元,乙隊每天清淤費用為0.8萬元,要使這次清淤的總費用不超過60萬元,則至少應安排乙工程隊清淤多少天?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】9分在如圖的方格中,OAB的頂點坐標分別為O0,0、A﹣2,﹣1、B﹣1,﹣3,O1A1B1OAB是關于點P為位似中心的位似圖形

1在圖中標出位似中心P的位置,并寫出點的坐標及O1A1B1OAB的相似比;

2以原點O為位似中心,在y軸的左側(cè)畫出OAB的一個位似OA2B2,使它與OAB的位似比為2:1,并寫出點B的對應點B2的坐標;

32條件下,若點Ma,bOAB邊上一點不與頂點重合,寫出M在OA2B2中的對應點M2的坐標

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中,,,陰影部分的面積是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個不透明的口袋中裝有4個分別標有數(shù)1,2,3,4的小球,它們的形狀、大小完全相同,小紅先從口袋里隨機摸出一個小球記下數(shù)為x,小穎在剩下的3個球中隨機摸出一個小球記下數(shù)為y,這樣確定了點P的坐標(x,y).

(1)小紅摸出標有數(shù)3的小球的概率是多少?.

(2)請你用列表法或畫樹狀圖法表示出由x,y確定的點P(x,y)所有可能的結(jié)果.

(3)求點P(x,y)在函數(shù)y=﹣x+5圖象上的概率.

查看答案和解析>>

同步練習冊答案