已知:如圖E在△ABC的邊AC上,且∠AEB=∠ABC。
(1)求證:∠ABE=∠C;
(2)若∠BAE的平分線AF交BE于F,F(xiàn)D∥BC交AC于D,設(shè)AB=5,AC=8,求DC的長。
(1)見解析
(2)DC的長為3
【解析】本題考查的是三角形內(nèi)角和定理、全等三角形的判定和性質(zhì)
(1)抓住∠BAC是△ABC和△ABE的公共內(nèi)角,利用三角形內(nèi)角和定理求解;
(2)利用(1)所得出的結(jié)論根據(jù)“AAS”證得△ABF≌△ADF即可得結(jié)果。
(1)∵∠ABE=180°-∠BAC-∠AEB,∠C=180°-∠BAC-∠ABC,且∠AEB=∠ABC
∴∠ABE=∠C
(2)AF平分∠BAE,∠BAF=∠DAF
FD∥BC,∠ADF=∠C
∠ABE=∠C,∠ABE=∠ADF
在△ABF與△ADF中
△ABF≌△ADF,
DC=AC-AD=3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:專項(xiàng)題 題型:證明題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com