【題目】如圖所示,已知A點從(1,0)點出發(fā),以每秒1個單位長的速度沿著x軸的正方向運動,經過t秒后,以O,A為頂點作菱形OABC,使B,C點都在第一象限內,且AO=AC,又以P(0,4)為圓心,PC為半徑的圓恰好與OC所在的直線相切,則t等于( )
A. 2-1 B. 2+1 C. 5 D. 7
【答案】C
【解析】
如下圖,連接CP,由已知易得OC=OA=AC=1+t,OP=,∠PCO=90°,由此易得∠AOC=60°,∠POC=30°,這樣在Rt△OPC中,即可解得OC=6,結合OC=1+t即可t=5.
如下圖,連接PC,
∵已知A點從(1,0)點出發(fā),以每秒1個單位長的速度沿著x軸的正方向運動,且經過t秒,
∴OA=1+t,
∵四邊形OABC是菱形,
∴OC=OA=1+t,
∵☉P恰好與OC所在的直線相切,
∴PC⊥OC,
∴∠OCP=90°,
∵AC=AO=OC,
∴∠AOC=60°,∠COP=30°,
∴在Rt△OPC中,PC=OP=2,
∴OC=6,
∴1+t=6,解得:t=5.
故選C.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4,點E在邊AB上,AE=1,若點P為對角線BD上的一個動點,則△PAE周長的最小值是( )
A.3B.4C.5D.6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】△ABC在平面直角坐標系xOy中的位置如圖所示
(1)若△A1B1C1與△ABC關于原點O成中心對稱,則點A1的坐標為 ;
(2)將△ABC向右平移4個單位長度得到△A2B2C2,則點B2的坐標為 ;
(3)將△ABC繞O點順時針方向旋轉90°,則點C走過的路徑長為 ;
(4)在x軸上找一點P,使PA+PB的值最小,則點P的坐標為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把四張形狀大小完全相同的小長方形卡片(如圖①)不重疊的放在一個底面為長方形(長為m,寬為n)的盒子底部(如圖②),盒子底面未被卡片覆蓋的部分用陰影表示,則圖②中兩塊陰影部分的周長和是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】點O是△ABC內一點,且點O到三邊的距離相等,∠A=60°,則∠BOC的度數(shù)為( 。
A.60°B.90°C.120°D.150°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知n邊形的內角和θ=(n-2)×180°.
(1)甲同學說,θ能取360°;而乙同學說,θ也能取630°.甲、乙的說法對嗎?若對,求出邊數(shù)n.若不對,說明理由;
(2)若n邊形變?yōu)?/span>(n+x)邊形,發(fā)現(xiàn)內角和增加了360°,用列方程的方法確定x.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠BCD=90°,且BC=DC,直線PQ經過點D.設∠PDC=α(45°<α<135°),BA⊥PQ于點A,將射線CA繞點C按逆時針方向旋轉90°,與直線PQ交于點E.
(1)當α=125°時,∠ABC= °;
(2)求證:AC=CE;
(3)若△ABC的外心在其內部,直接寫出α的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把一個足球垂直水平地面向上踢,時間為(秒時該足球距離地面的高度(米適用公式.下列結論:①足球踢出4秒后回到地面;②足球上升的最大高度為30米;③足球踢出3秒后高度第一次到達15米;④足球踢出2秒后高度到達最大.其中正確的結論是___
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(閱讀理解)
已知下面是按一定規(guī)律排列的一列數(shù),且任意相鄰四個數(shù)的和都相等.這列數(shù)據(jù)從前往后,從第一個數(shù)開始依次是-5,-2,1,9,x,….
(理解應用)
(1)求第5個數(shù)x;
(2)求從前往后前38個數(shù)的和;
(3)若m為正整數(shù),直接用含m的式子表示數(shù)字-2處在第幾個數(shù)的位置上.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com