如圖7,把拋物線y=x2平移得到拋物線m,拋物線m經(jīng)過點A(-6,0)和原點O(0,0),它的頂點為P,它的對稱軸與拋物線y=x2交于點Q,則圖中陰影部分的面積為________________.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,直線y=
3
4
x-1
與拋物線y=-
1
4
x2
交于A、B兩點(A在B的左側(cè)),與y軸交于點C.
(1)求線段AB的長;
(2)若以AB為直徑的圓與直線x=m有公共點,求m的取值范圍;
(3)如圖2,把拋物線向右平移2個單位,再向上平移n個單位(n>0),拋物線與x軸交于P、Q兩點,過C、P、Q三點的圓的面積是否存在最小值?若存在,請求出這個最小值和此時n的值;若不存在,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•石景山區(qū)二模)(1)如圖1,把拋物線y=-x2平移后得到拋物線C1,拋物線C1經(jīng)過點A(-4,0)和原點O(0,0),它的頂點為P,它的對稱軸與拋物線y=-x2交于點Q,則拋物線C1的解析式為
y=-x2-4x
y=-x2-4x
;圖中陰影部分的面積為
8
8

(2)若點C為拋物線C1上的動點,我們把∠ACO=90°時的△ACO稱為拋物線C1的內(nèi)接直角三角形.過點B(1,0)做x軸的垂線l,拋物線C1的內(nèi)接直角三角形的兩條直角邊所在直線AC、CO與直線l分別交于M、N兩點,以MN為直徑的⊙D與x軸交于E、F兩點,如圖2.請問:當(dāng)點C在拋物線C1上運動時,線段EF的長度是否會發(fā)生變化?請寫出并證明你的判斷.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖12,把拋物線(虛線部分)向右平移1個單位長度,再向上平移1個單位長度,得到拋物線,拋物線與拋物線關(guān)于軸對稱.點、、分別是拋物線、軸的交點,、分別是拋物線、的頂點,線段軸于點.

(1)分別寫出拋物線的解析式;

(2)設(shè)是拋物線上與、兩點不重合的任意一點,點是點關(guān)于軸的對稱點,試判斷以、為頂點的四邊形是什么特殊的四邊形?說明你的理由.

(3)在拋物線上是否存在點,使得,如果存在,求出點的坐標(biāo),如果不存在,請說明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年福建省廈門外國語學(xué)校初二第一學(xué)期期中考試數(shù)學(xué)卷 題型:解答題

如圖12,把拋物線(虛線部分)向右平移1個單位長度,再向上平移1個單位長度,得到拋物線,拋物線與拋物線關(guān)于軸對稱.點、分別是拋物線軸的交點,分別是拋物線、的頂點,線段軸于點.

(1)分別寫出拋物線的解析式;
(2)設(shè)是拋物線上與兩點不重合的任意一點,點是點關(guān)于軸的對稱點,試判斷以、、為頂點的四邊形是什么特殊的四邊形?說明你的理由.
(3)在拋物線上是否存在點,使得,如果存在,求出點的坐標(biāo),如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省杭州市啟正中學(xué)九年級(上)月考數(shù)學(xué)試卷(10月份)(解析版) 題型:解答題

如圖1,直線與拋物線交于A、B兩點(A在B的左側(cè)),與y軸交于點C.
(1)求線段AB的長;
(2)若以AB為直徑的圓與直線x=m有公共點,求m的取值范圍;
(3)如圖2,把拋物線向右平移2個單位,再向上平移n個單位(n>0),拋物線與x軸交于P、Q兩點,過C、P、Q三點的圓的面積是否存在最小值?若存在,請求出這個最小值和此時n的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案