【題目】 今年清明節(jié)前后某茶葉銷售商在青山茶廠先后購進(jìn)兩批茶葉.第一批茶葉進(jìn)貨用了5.4萬元,進(jìn)貨單價為a元/千克.購回后該銷售商將茶葉分類包裝出售,把其中300千克精裝品以進(jìn)貨單件的兩倍出售;余下的簡裝品以150元/千克的價格出售,全部賣出.第二批進(jìn)貨用了5萬元,這一次的進(jìn)貨單價每千克比第一批少了20元.購回分類包裝后精裝品占總質(zhì)量的一半,以200元/千克的單價出售;余下的簡裝品在這批進(jìn)貨單價的基礎(chǔ)上每千克加價40元后全部賣出.若其它成本不計,第二批茶葉獲得的毛利潤是3.5萬元.
(1)用含a的代數(shù)式表示第一批茶葉的毛利潤;
(2)求第一批茶葉中精裝品每千克售價.(總售價-總進(jìn)價=毛利潤)
【答案】(1)600a+-99000;(2)240元
【解析】
(1)用總銷售額減去成本即可求出毛利潤;
(2)因為第一批進(jìn)貨單價為元/千克,則第二批的進(jìn)貨單價為()元/千克,根據(jù)第二批茶葉獲得的毛利潤是35000元,列方程求解.
(1)由題意得,第一批茶葉的毛利潤為:
300×2a+150×(-300)-54000=600a+99000;
(2)設(shè)第一批進(jìn)貨單價為a元/千克,
由題意得,××200+××(20+40)50000=35000,
解得:120,
經(jīng)檢驗:120是原分式方程的解,且符合題意.
則售價為:.
答:第一批茶葉中精裝品每千克售價為240元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等邊△ABC的邊長為4,點P,Q分別是邊BC,AC上一點,PB=1,則PA=_____,若BQ=AP,則AQ=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列5個結(jié)論: ① c=0;②該拋物線的對稱軸是直線x=﹣1;③當(dāng)x=1時,y=2a;④am+bm+a>0(m≠﹣1);⑤設(shè)A(100,y),B(﹣100,y)在該拋物線上,則y>y.其中正確的結(jié)論有___________ .(寫出所有正確結(jié)論的序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明從家出發(fā)沿一條筆直的公路騎自行車前往圖書館看書,他與圖書館之間的距離y(km)與出發(fā)時間t(h)之間的函數(shù)關(guān)系如圖1中線段AB所示,在小明出發(fā)的同時,小明的媽媽從圖書館借書結(jié)束,沿同一條公路騎電動車勻速回家,兩人之間的距離s(km)與出發(fā)時間t(h)之間的函數(shù)關(guān)系式如圖2中折線段CD﹣DE﹣EF所示.
(1)小明騎自行車的速度為 km/h、媽媽騎電動車的速度為 km/h;
(2)解釋圖中點E的實際意義,并求出點E的坐標(biāo);
(3)求當(dāng)t為多少時,兩車之間的距離為18km.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 小明遇到這樣一個問題
如圖1,△ABC中,∠ACB=90°,點D在AB上,且BD=BC,求證:∠ABC=2∠ACD.
小明發(fā)現(xiàn),除了直接用角度計算的方法外,還可以用下面兩種方法:
方法2:如圖2,作BE⊥CD,垂足為點E.
方法3:如圖3,作CF⊥AB,垂足為點F.
根據(jù)閱讀材料,從三種方法中任選一種方法,證明∠ABC=2∠ACD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在銳角三角形ABC中,點D,E分別在邊AC,AB上,AG⊥BC于點G,AF⊥DE于點F,∠EAF=∠GAC.
(1)求證:△ADE∽△ABC;
(2)若AD=3,AB=5,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系xOy中,A(0,4),B(8,0),C(8,4).
(1)試說明四邊形AOBC是矩形.
(2)在x軸上取一點D,將△DCB繞點C順時針旋轉(zhuǎn)90°得到△D'CB'(點D'與點D對應(yīng)).
①若OD=3,求點D'的坐標(biāo).
②連接AD'、OD',則AD'+OD'是否存在最小值,若存在,請直接寫出最小值及此時點D'的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖乙,△ABC 和△ADE 是有公共頂點的等腰直角三角形,∠BAC=∠DAE=90°,點P為射線 BD,CE的交點.
(1)如圖甲,將△ADE 繞點A 旋轉(zhuǎn),當(dāng) C、D、E 在同一條直線上時,連接BD、BE,則下列給出的四個結(jié)論中,其中正確的是哪幾個.(回答直接寫序號)
①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2)
(2)若 AB=4,AD=2,把△ADE 繞點 A 旋轉(zhuǎn),
①當(dāng)∠CAE=90°時,求 PB 的長;
②直接寫出旋轉(zhuǎn)過程中線段 PB 長的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】實驗探究:
(1)如圖1,對折矩形紙片ABCD,使AD與BC重合,得到折痕EF,把紙片展開;再一次折疊紙片,使點A落在EF上,并使折痕經(jīng)過點B,得到折痕BM,同時得到線段BN,MN.請你觀察圖1,猜想∠MBN的度數(shù)是多少,并證明你的結(jié)論.
(2)將圖1中的三角形紙片BMN剪下,如圖2,折疊該紙片,探究MN與BM的數(shù)量關(guān)系,寫出折疊方案,并結(jié)合方案證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com