【題目】問題背景:已知∠EDF的頂點D在△ABC的邊AB所在直線上(不與A,B重合),DE交AC所在直線于點M,DF交BC所在直線于點N,記△ADM的面積為S1 , △BND的面積為S2 .
(1)初步嘗試:如圖①,當(dāng)△ABC是等邊三角形,AB=6,∠EDF=∠A,且DE∥BC,AD=2時,則S1S2=;
(2)類比探究:在(1)的條件下,先將點D沿AB平移,使AD=4,再將∠EDF繞點D旋轉(zhuǎn)至如圖②所示位置,求S1S2的值;
(3)延伸拓展:當(dāng)△ABC是等腰三角形時,設(shè)∠B=∠A=∠EDF=α.
(Ⅰ)如圖③,當(dāng)點D在線段AB上運動時,設(shè)AD=a,BD=b,求S1S2的表達(dá)式(結(jié)果用a,b和α的三角函數(shù)表示).
(Ⅱ)如圖④,當(dāng)點D在BA的延長線上運動時,設(shè)AD=a,BD=b,直接寫出S1S2的表達(dá)式,不必寫出解答過程.
【答案】
(1)12
(2)
解:如圖2中,設(shè)AM=x,BN=y.
∵∠MDB=∠MDN+∠NDB=∠A+∠AMD,∠MDN=∠A,
∴∠AMD=∠NDB,∵∠A=∠B,
∴△AMD∽△BDN,
∴ = ,
∴ = ,
∴xy=8,
∵S1= ADAMsin60°= x,S2= DBsin60°= y,
∴S1S2= x y= xy=12
(3)
解:Ⅰ如圖3中,設(shè)AM=x,BN=y,
同法可證△AMD∽△BDN,可得xy=ab,
∵S1= ADAMsinα= axsinα,S2= DBBNsinα= bysinα,
∴S1S2= (ab)2sin2α.
Ⅱ如圖4中,設(shè)AM=x,BN=y,
同法可證△AMD∽△BDN,可得xy=ab,
∵S1= ADAMsinα= axsinα,S2= DBBNsinα= bysinα,
∴S1S2= (ab)2sin2α.
【解析】解:(1)如圖1中,
∵△ABC是等邊三角形,
∴AB=CB=AC=6,∠A=∠B=60°,
∵DE∥BC,∠EDF=60°,
∴∠BND=∠EDF=60°,
∴∠BDN=∠ADM=60°,
∴△ADM,△BDN都是等邊三角形,
∴S1= 22= ,S2= (4)2=4 ,
∴S1S2=12,
所以答案是12.
【考點精析】本題主要考查了等腰三角形的性質(zhì)和等邊三角形的性質(zhì)的相關(guān)知識點,需要掌握等腰三角形的兩個底角相等(簡稱:等邊對等角);等邊三角形的三個角都相等并且每個角都是60°才能正確解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)A= ÷(a﹣ ).
(1)化簡A;
(2)當(dāng)a=3時,記此時A的值為f(3);當(dāng)a=4時,記此時A的值為f(4);… 解關(guān)于x的不等式: ﹣ ≤f(3)+f(4)+…+f(11),并將解集在數(shù)軸上表示出來.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明從家到學(xué)校,先勻速步行到車站,等了幾分鐘后坐上了公交車,公交車沿著公路勻速行駛一段時間后到達(dá)學(xué)校,小明從家到學(xué)校行駛路程s(m)與時間t(min)的大致圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線y=kx+b與反比例函數(shù)y= (x>0)的圖象分別交于點 A(m,3)和點B(6,n),與坐標(biāo)軸分別交于點C和點D.
(1)求直線AB的解析式;
(2)若點P是x軸上一動點,當(dāng)△COD與△ADP相似時,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,CD是AB邊上的中線,E是CD的中點,過點C作AB的平行線交AE的延長線于點F,連接BF.
(1)求證:CF=AD;
(2)若CA=CB,∠ACB=90°,試判斷四邊形CDBF的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若記y=f(x)= ,其中f(1)表示當(dāng)x=1時y的值, 即f(1)= = ;f( )表示當(dāng)x= 時y的值,即f( )= ;…;則f(1)+f(2)+f( )+f(3)+f( )+…+f(2011)+f( )= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究題
(1)問題發(fā)現(xiàn):
如圖1,在正方形ABCD中,點E、F分別是邊BC、AB上的點,且CE=BF,連接DE,過點E作EG⊥DE,使EG=DE,連接FG,F(xiàn)C,請判斷:FG與CE的數(shù)量關(guān)系是 , 位置關(guān)系是 .
(2)拓展探究:
如圖2,若點E、F分別是CB、BA延長線上的點,其它條件不變,(1)中結(jié)論是否仍然成立?請出判斷判斷予以證明;
(3)類比延伸:
如圖3,若點E、F分別是BC、AB延長線上的點,其它條件不變,(1)中結(jié)論是否仍然成立?請直接寫出你的判斷.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com