【題目】如圖,平行四邊形ABCD,AEBC交點(diǎn)E,連接DE,F(xiàn)DE上一點(diǎn),且∠AFE=B=60°.

(1)求證:△ADF∽△DEC;

(2)AE=3,AD=4,求EF的長.

【答案】(1)證明見解析;(2).

【解析】

(1)由平行四邊形的性質(zhì)結(jié)合等角的補(bǔ)角相等,可得出∠AFD=C=120°、ADBC,利用平行線的性質(zhì)可得出∠ADF=DEC,進(jìn)而即可證出ADF∽△DEC;
(2)由AE及∠B的值可求出BE、CE的長度,在RtADE中,利用勾股定理可求出DE的長度,由ADF∽△DEC利用相似三角形的性質(zhì)即可求出DF的長度,再將其代入EF=DE-DF中即可求出EF的長.

(1)證明:∵四邊形ABCD為平行四邊形,∠AFE=B=60°,

∴∠AFD=C=120°,ADBC,

∴∠ADF=DEC,

∴△ADF∽△DEC.

(2)解:∵AE=3,B=60°,

BE=,CE=4﹣

RtADE中,AE=3,AD=4,

DE==5.

∵△ADF∽△DEC,

,即

DF=,

EF=DE﹣DF=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系內(nèi),已知點(diǎn)、點(diǎn),動(dòng)點(diǎn)從點(diǎn)開始在線段上以每秒個(gè)單位長度的速度向點(diǎn)移動(dòng),同時(shí)動(dòng)點(diǎn)從點(diǎn)開始在線段上以每秒個(gè)單位長度的速度向點(diǎn)移動(dòng),設(shè)點(diǎn)、移動(dòng)的時(shí)間為秒.

求點(diǎn)的坐標(biāo);

當(dāng)為何值時(shí),的面積為個(gè)平方單位?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知四邊形,∠DAB=DCB,對(duì)角線交于點(diǎn).分別添加下列條件之一:①;②;③;④∠ABC=ADC,能使四邊形成為平行四邊形,則正確的選項(xiàng)有_____.(填寫序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 為更新果樹品種,某果園計(jì)劃新購進(jìn)A、B兩個(gè)品種的果樹苗栽植培育,若計(jì)劃購進(jìn)這兩種果樹苗共45棵,其中A種苗的單價(jià)為7元/棵,購買B種苗所需費(fèi)用y(元)與購買數(shù)量x(棵)之間存在如圖所示的函數(shù)關(guān)系.

1)求yx的函數(shù)關(guān)系式;

2)若在購買計(jì)劃中,B種苗的數(shù)量不超過35棵,但不少于A種苗的數(shù)量,請(qǐng)?jiān)O(shè)計(jì)購買方案,使總費(fèi)用最低,并求出最低費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:對(duì)于給定的一次函數(shù)y=ax+ba0),把形如的函數(shù)稱為一次函數(shù)y=ax+ba0)的衍生函數(shù).已知矩形ABCD的頂點(diǎn)坐標(biāo)分別為A1,0),B1,2),C(-3,2),D(-3,0).

1)已知函數(shù)y=2x+l.

①若點(diǎn)P(-1,m)在這個(gè)一次函數(shù)的衍生函數(shù)圖像上,則m= .

②這個(gè)一次函數(shù)的衍生函數(shù)圖像與矩形ABCD的邊的交點(diǎn)坐標(biāo)分別為 .

2)當(dāng)函數(shù)y=kx-3k>0)的衍生函數(shù)的圖象與矩形ABCD2個(gè)交點(diǎn)時(shí),k的取值范圍是 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結(jié)論:

b<0;4a+2b+c<0;a﹣b+c>0;(a+c)2<b2.其中正確的結(jié)論是

A①② B.①③ C.①③④ D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,AB=AC,點(diǎn)E,F(xiàn)在邊BC上,BE=CF,點(diǎn)DAF的延長線上,AD=AC.

(1)求證:ABE≌△ACF;

(2)若∠BAE=30°,則∠ADC=   °.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABO的直徑,BCAB,連結(jié)OC,弦ADOC,直線CDBA的延長線于點(diǎn)E

1)求證:直線CDO的切線;

2)若DE=2BC,求ADOC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形網(wǎng)格中,OBC的頂點(diǎn)分別為O0,0,B3,1、C2,1

1以點(diǎn)O0,0為位似中心,按比例尺2:1在位似中心的異側(cè)將OBC放大為OBC,放大后點(diǎn)B、C兩點(diǎn)的對(duì)應(yīng)點(diǎn)分別為B、C,畫出OBC,并寫出點(diǎn)B、C的坐標(biāo):B ,C ,

21中,若點(diǎn)Mx,y為線段BC上任一點(diǎn),寫出變化后點(diǎn)M的對(duì)應(yīng)點(diǎn)M的坐標(biāo) ,

查看答案和解析>>

同步練習(xí)冊(cè)答案