【題目】如圖,已知均為等腰直角三角形,,點(diǎn)的中點(diǎn).過點(diǎn)平行的直線交射線于點(diǎn).

1)當(dāng)、三點(diǎn)在同一直線上時(shí)(如圖1),求證:的中點(diǎn);

2)將圖1繞點(diǎn)旋轉(zhuǎn),當(dāng)、三點(diǎn)在同一直線上時(shí)(如圖2),求證: 為等腰直角三角形;

3)在(2)條件下,已知,,的長(zhǎng).

【答案】(1)詳見解析;(2)詳見解析;(3)

【解析】

1)由ENAD和點(diǎn)MDE的中點(diǎn)可以證得△ADM≌△NEM,從而證得MAN的中點(diǎn);(2)易證AB=DA=NE,∠ABC=NEC=135°,從而可以證得△ABC≌△NEC,進(jìn)而可以證得AC=NC,∠ACN=BCE=90°,則有△ACN為等腰直角三角形;(3)由(2)知,,則可求出AB,BE的值,根據(jù)求出AE的值,在根據(jù)勾股定理求出AN即可.

1)證明:,

,

點(diǎn)的中點(diǎn),

,

,

的中點(diǎn);

2)證明:均為等腰直角三角形,

,,

,

,

,

,

,,三點(diǎn)在同一直線上,

,

,

(已證),

,

,

,

,

,

,

為等腰直角三角形;

3)由(2)知,,

在等腰直角三角形中,,

,

在等腰Rt中,,

,

由(2)知,

中,,根據(jù)勾股定理得,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)計(jì)算并觀察下列各式:

1個(gè):(ab)(a+b)______

2個(gè):(ab)(a2+ab+b2)______;

3個(gè):(ab)(a3+a2b+ab2+b3)_______;

……

這些等式反映出多項(xiàng)式乘法的某種運(yùn)算規(guī)律.

(2)猜想:若n為大于1的正整數(shù),則(ab)(an1+an2b+an3b2+……+a2bn3+abn2+bn1)________;

(3)利用(2)的猜想計(jì)算:2n1+2n2+2n3+……+23+22+1______

(4)拓廣與應(yīng)用:3n1+3n2+3n3+……+33+32+1_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:

(1)(2x2y)3(3x2y)

(2)(36x3-24x2+2x)÷4x

(3)(2x+y+1)(2x-y-1)

(4)(-3ax)2(5a2-3ax3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校要從小王和小李兩名同學(xué)中挑選一人參加全國(guó)數(shù)學(xué)競(jìng)賽,在最近的五次選拔測(cè)試中,他倆的成績(jī)分別如下表:

根據(jù)上表解答下列問題:

(1)完成下表:

姓名

極差(分)

平均成績(jī)(分)

中位數(shù)(分)

眾數(shù)(分)

方差

小王

40

80

75

75

190

小李

(2)在這五次測(cè)試中,成績(jī)比較穩(wěn)定的同學(xué)是誰?若將80分以上(含80分)的成績(jī)視為優(yōu)秀,則小王、小李在這五次測(cè)試中的優(yōu)秀率各是多少?

(3)歷屆比賽表明,成績(jī)達(dá)到80分以上(含80分)就很可能獲獎(jiǎng),成績(jī)達(dá)到90分以上(含90分)就很可能獲得一等獎(jiǎng),那么你認(rèn)為應(yīng)選誰參加比賽比較合適?說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊三角形中,邊的中點(diǎn),邊的延長(zhǎng)線上一點(diǎn),,于點(diǎn).下列結(jié)論錯(cuò)誤的是(

A.

B.

C.

D..

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列調(diào)查方式正確的是(

A.為了解七(1)班同學(xué)的課外興趣愛好情況,采用抽樣調(diào)查的方式.

B.為了解全區(qū)七年級(jí)學(xué)生對(duì)足球的愛好情況,采用抽樣調(diào)查的方式.

C.為了解新生產(chǎn)的型藥的藥效情況,采用全面調(diào)查的方式.

D.為了解深圳市民的業(yè)余生活情況,采用全面調(diào)查的方式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校九年級(jí)舉行畢業(yè)典禮,需要從九(1)班的2名男生1名女生、九(2)的1名男生1名女生共5人中選出2名主持人.

1)用樹形圖或列表法列出所有可能情形;

2)求2名主持人來自不同班級(jí)的概率;

3)求2名主持人恰好11女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC 中,∠BAC=120°,點(diǎn) D BC 上一點(diǎn),BD 的垂直平分線交 AB 于點(diǎn)E,將△ACD 沿 AD 折疊,點(diǎn) C 恰好與點(diǎn) E 重合,則∠B 等于_______°;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,平分平分,則下列結(jié)論中:

;②平分;③;④,正確的有(  )

A.1個(gè)B.個(gè)C.3個(gè)D.個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案