【題目】某校對A《唐詩》、B《宋詞》、C《蒙山童韻》、D其它,這四類著作開展“最受歡迎的傳統(tǒng)文化著作”調(diào)查,隨機調(diào)查了若干名學生(每名學生必選且只能選這四類著作中的一種)并將得到的信息繪制了下面兩幅不完整的統(tǒng)計圖:
(1)求一共調(diào)查了多少名學生;
(2)請將條形統(tǒng)計圖補充完整;
(3)該校語文老師想從這四類著作中隨機選取兩類作為學生寒假必讀書籍,請用樹狀圖或列表的方法求恰好選中《宋詞》和《蒙山童韻》的概率.
【答案】(1)本次一共調(diào)查的學生數(shù)是50人;(2)補圖見解析;(3)P(選中B、C)=.
【解析】
(1)根據(jù)C的人數(shù)以及C的比例即可求出總人數(shù);
(2)根據(jù)(1)中的總人數(shù)以及A、C、D中的人數(shù)即可求出B的人數(shù),進而補全條形統(tǒng)計圖;
(3)先列出所有可能的情況,共12種情況,選A、B共有2種,再運用概率公式即可求解.
(1)本次一共調(diào)查的學生數(shù)是:15÷30%=50(人);
(2)B對應的人數(shù)為:50﹣16﹣15﹣7=12人,
補圖如下:
(3)根據(jù)題意畫樹狀圖如下:
∵共有12種等可能的結果,恰好選中B、C的有2種,
∴P(選中B、C)
科目:初中數(shù)學 來源: 題型:
【題目】有兩張完全重合的矩形紙片,小亮同學將其中一張繞點A順時針旋轉90°后得到矩形AMEF(如圖1),連接BD、MF,若此時他測得BD=8cm,∠ADB=30度.請回答下列問題:(1)試探究線段BD與線段MF的關系,并簡要說明理由;
(2)小紅同學用剪刀將△BCD與△MEF剪去,與小亮同學繼續(xù)探究.他們將△ABD繞點A順時針旋轉得△AB1D1,AD1交FM于點K(如圖2),設旋轉角為β(0°<β<90°),當△AFK為等腰三角形時,請直接寫出旋轉角β的度數(shù);
(3)若將△AFM沿AB方向平移得到△A2F2M2(如圖3),F(xiàn)2M2與AD交于點P,A2M2與BD交于點N,當NP∥AB時,求平移的距離是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,坐標原點為O,A點坐標為(4,0),B點坐標為(﹣1,0),以AB的中點P為圓心,AB為直徑作⊙P的正半軸交于點C.
(1)求經(jīng)過A、B、C三點的拋物線所對應的函數(shù)解析式;
(2)設M為(1)中拋物線的頂點,求直線MC對應的函數(shù)解析式;
(3)試說明直線MC與⊙P的位置關系,并證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,平行四邊形ABCD,對角線AC與BD相交于點E,點G為AD的中點,連接CG,CG的延長線交BA的延長線于點F,連接FD.
(1)求證:AB=AF;
(2)若AG=AB,∠BCD=120°,判斷四邊形ACDF的形狀,并證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)圖象的一部分,與x軸的交點A在點(2,0)和(3,0)之間,對稱軸是x=1.對于下列說法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m為實數(shù));⑤當﹣1<x<3時,y>0,其中正確的是( )
A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】南方旱情嚴重,乙水庫需每天向外供相同量的水. 3天后,為緩解旱情,北方甲水庫立即以管道運輸?shù)姆绞浇o乙水庫送水,在給乙水庫送水前甲水庫的蓄水量一直為5000萬m3.由于兩水庫相距較遠,甲水庫的送出的水要5天后才能到達乙水庫,12天后旱情緩解,乙水庫不再向外供水,甲水庫也停止向乙水庫送水.下圖是甲水庫的蓄水量與乙水庫蓄水量之差y(萬m3)與時間x(天)之間的函數(shù)圖象.則甲水庫每天的送水量為__________萬m3.(假設在單位時間內(nèi),甲水庫的放水量與乙水庫的進水量相同,水在排放、接收以及輸送過程中的損耗不計).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線l1:y=﹣x與反比例函數(shù)y=的圖象交于A,B兩點(點A在點B左側),已知A點的縱坐標是2:
(1)求反比例函數(shù)的表達式;
(2)將直線l1:y=﹣x向上平移后的直線l2與反比例函數(shù)y=在第二象限內(nèi)交于點C,如果△ABC的面積為30,求平移后的直線l2的函數(shù)表達式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)學課上學習了圓周角的概念和性質(zhì):“頂點在圓上,兩邊與圓相交”,“同弧所對的圓周角相等”,小明在課后繼續(xù)對圓外角和圓內(nèi)角進行了探究.
下面是他的探究過程,請補充完整:
定義概念:頂點在圓外,兩邊與圓相交的角叫做圓外角,頂點在圓內(nèi),兩邊與圓相交的角叫做圓內(nèi)角.如圖1,∠M為所對的一個圓外角.
(1)請在圖2中畫出所對的一個圓內(nèi)角;
提出猜想
(2)通過多次畫圖、測量,獲得了兩個猜想:一條弧所對的圓外角______這條弧所對的圓周角;一條弧所對的圓內(nèi)角______這條弧所對的圓周角;(填“大于”、“等于”或“小于”)
推理證明:
(3)利用圖1或圖2,在以上兩個猜想中任選一個進行證明;
問題解決
經(jīng)過證明后,上述兩個猜想都是正確的,繼續(xù)探究發(fā)現(xiàn),還可以解決下面的問題.
(4)如圖3,F,H是∠CDE的邊DC上兩點,在邊DE上找一點P使得∠FPH最大.請簡述如何確定點P的位置.(寫出思路即可,不要求寫出作法和畫圖)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知如圖 1,在△ABC 中,∠ACB=90°,BC=AC,點 D 在 AB 上,DE⊥AB交 BC 于 E,點 F 是 AE 的中點
(1) 寫出線段 FD 與線段 FC 的關系并證明;
(2) 如圖 2,將△BDE 繞點 B 逆時針旋轉α(0°<α<90°),其它條件不變,線段 FD 與線段 FC 的關系是否變化,寫出你的結論并證明;
(3) 將△BDE 繞點 B 逆時針旋轉一周,如果 BC=4,BE=2,直接寫出線段 BF 的范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com