【題目】如圖,已知拋物線經(jīng)過點(diǎn)A(-3,0),C(03),交x軸于另一點(diǎn)B,其頂點(diǎn)為D

1)求拋物線的解析式;

2)點(diǎn)P為拋物線上一點(diǎn),直線CPx軸于點(diǎn)E,若△CAE與△OCD相似,求P點(diǎn)坐標(biāo);

3)如果點(diǎn)Fy軸上,點(diǎn)M在直線AC上,那么在拋物線上是否存在點(diǎn)N,使得以C,F,M,N為頂點(diǎn)的四邊形是菱形?若存在,請(qǐng)求出菱形的周長(zhǎng);若不存在,請(qǐng)說明理由.

【答案】1;(2P;(3)存在菱形,其周長(zhǎng)為,

【解析】

1)將A,C兩點(diǎn)坐標(biāo)代入中求出bc即可得解;

2)根據(jù)題意進(jìn)行分類討論,兩種情況,,從而求出E點(diǎn)坐標(biāo)及CE解析式即可求出點(diǎn)P坐標(biāo);

3)根據(jù)題意,分類討論,兩種情況CF為對(duì)角線,CF為菱形的一邊,進(jìn)而即可求得菱形的周長(zhǎng).

1)∵拋物線經(jīng)過點(diǎn),

,解得

此拋物線解析式為:;

2)∵

∴頂點(diǎn)

,

,

∴點(diǎn)E只能在A點(diǎn)左邊

①如下圖,若

聯(lián)立

,(舍去)

;

②若

AE=2

聯(lián)立

,(舍去)

因此,;

3)在拋物線上存在點(diǎn)N,使得以C,F,MN為頂點(diǎn)的四邊形是菱形

①若CF為對(duì)角線,則CFNM互相垂直平分時(shí),四邊形CNFM為菱形

,四邊形CNFM為正方形

N點(diǎn)與頂點(diǎn)D重合

∴菱形CNFM的周長(zhǎng)為;

②若CF為菱形的一邊,則,,NM=NF時(shí),四邊形CNFM為菱形

FFHNMH,設(shè)直線NMx軸于G

,

NM===NF

,

NF=FH

FH=OG=

=

NF=NF=菱形周長(zhǎng)為

因此,存在菱形,其周長(zhǎng)為,.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,分別以的邊為腰向外作等腰和等腰,連的中線.

1)知識(shí)理解:圖①所示,當(dāng)時(shí),則的位置關(guān)系為______,數(shù)量關(guān)系為______;

2)知識(shí)應(yīng)用:圖②所示,當(dāng)時(shí),M,N分別是BC,DE的中點(diǎn),求證:;

3)拓展提高:圖③所示,四邊形中,,分別以邊為腰作等腰和等腰,連,分別取、的中點(diǎn),連

①求證:;

②直接寫出之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的平分線過點(diǎn),以點(diǎn)為圓心的圓與相切于點(diǎn),的直徑.

1)求證:的切線;

2)若,,求;

3)若的半徑為,,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,線段AB經(jīng)過⊙O的圓心O,交⊙OA、C兩點(diǎn),BC1,AD為⊙O的弦,連結(jié)BD,∠BAD=∠ABD30°

1)求證:直線BD是⊙O的切線;

2)求⊙O的半徑長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】只有1和它本身兩個(gè)因數(shù)且大于1的正整數(shù)叫做素?cái)?shù).我國數(shù)學(xué)家陳景潤(rùn)哥德巴赫猜想的研究中取得了世界領(lǐng)先的成果.哥德巴赫猜想是每個(gè)大于2的偶數(shù)都表示為兩個(gè)素?cái)?shù)的和,如10=3+7

1)從7,11,13174個(gè)素?cái)?shù)中隨機(jī)抽取一個(gè),則抽到的數(shù)是11的概率是_____;

2)從7,1113,174個(gè)素?cái)?shù)中隨機(jī)抽取1個(gè)數(shù),再從余下的3個(gè)數(shù)中隨機(jī)抽取1個(gè)數(shù),用畫樹狀圖或列表的方法,求抽到的兩個(gè)素?cái)?shù)之和等于24的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)問題發(fā)現(xiàn):如圖1,△ABC是等腰直角三角形,四邊形ADEF是正方形,點(diǎn)D、F分別在邊ABAC上,請(qǐng)直接寫出線段BDCF的數(shù)量和位置關(guān)系;

2)拓展探究:如圖2,當(dāng)正方形ADEF繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)銳角θ時(shí),上述結(jié)論還成立嗎?若成立,請(qǐng)給予證明;若不成立,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(-1.5,0),B(0,2),將△ABO順著x軸的正半軸無滑動(dòng)的滾動(dòng),第一次滾動(dòng)到①的位置,點(diǎn)B的對(duì)應(yīng)點(diǎn)記作B1;第二次滾動(dòng)到②的位置,點(diǎn)B1的對(duì)應(yīng)點(diǎn)記作B2;第三次滾動(dòng)到③的位置,點(diǎn)B2的對(duì)應(yīng)點(diǎn)記作B3;;依次進(jìn)行下去,則點(diǎn)B2020的坐標(biāo)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)坐標(biāo)為,軸正半軸上一動(dòng)點(diǎn),則度數(shù)為_________,在點(diǎn)運(yùn)動(dòng)的過程中的最小值為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某水果商場(chǎng)經(jīng)銷一種高檔水果,原價(jià)每千克25元,連續(xù)兩次漲價(jià)后每千克水果現(xiàn)在的價(jià)格為36元.

1)若每次漲價(jià)的百分率相同.求每次漲價(jià)的百分率;

2)若進(jìn)價(jià)不變,按現(xiàn)價(jià)售出,每千克可獲利15元,但該水果出現(xiàn)滯銷,商場(chǎng)決定降價(jià)m元出售,同時(shí)把降價(jià)的幅度m控制在的范圍,經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),每天銷售量 (千克)與降價(jià)的幅度m(元)成正比例,且當(dāng)時(shí), m的函數(shù)解析式;

3)在(2)的條件下,若商場(chǎng)每天銷售該水果盈利元,為確保每天盈利最大,該水果每千克應(yīng)降價(jià)多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案