如圖(1),⊙O中AB是直徑,C是⊙O上一點,∠ABC=45°,等腰直角三角形DCE中∠DCE是直角,點D在線段AC上.
(1)證明:B、C、E三點共線;
(2)若M是線段BE的中點,N是線段AD的中點,證明:MN=OM;
(3)將△DCE繞點C逆時針旋轉(zhuǎn)α(0°<α<90°)后,記為△D1CE1(圖2),若M1是線段BE1的中點,N1是線段AD1的中點,M1N1=OM1是否成立?若是,請證明;若不是,說明理由.
分析:(1)根據(jù)直徑所對的圓周角為直角得到∠BCA=90°,∠DCE是直角,即可得到∠BCA+∠DCE=90°+90°=180°; (2)連接BD,AE,ON,延長BD交AE于F,先證明Rt△BCD≌Rt△ACE,得到BD=AE,∠EBD=∠CAE,則∠CAE+∠ADF=∠CBD+∠BDC=90°,即BD⊥AE,再利用三角形的中位線的性質(zhì)得到ON=BD,OM=AE,ON∥BD,AE∥OM,于是有ON=OM,ON⊥OM,即△ONM為等腰直角三角形,即可得到結(jié)論; (3)證明的方法和(2)一樣. 解答:(1)證明:∵AB是直徑, ∴∠BCA=90°, 而等腰直角三角形DCE中∠DCE是直角, ∴∠BCA+∠DCE=90°+90°=180°, ∴B、C、E三點共線; (2)連接BD,AE,ON,延長BD交AE于F,如圖, ∵CB=CA,CD=CE, ∴Rt△BCD≌Rt△ACE, ∴BD=AE,∠EBD=∠CAE, ∴∠CAE+∠ADF=∠CBD+∠BDC=90°,即BD⊥AE, 又∵M是線段BE的中點,N是線段AD的中點,而O為AB的中點, ∴ON=BD,OM=AE,ON∥BD,AE∥OM; ∴ON=OM,ON⊥OM,即△ONM為等腰直角三角形, ∴MN=OM; (3)成立.理由如下: 和(2)一樣,易證得Rt△BCD1≌Rt△ACE1,同里可證BD1⊥AE1,△ON1M1為等腰直角三角形, 從而有M1N1=OM1. 點評:本題考查了直徑所對的圓周角為直角和三角形中位線的性質(zhì);也考查了三角形全等的判定與性質(zhì)、等腰直角三角形的性質(zhì)以及旋轉(zhuǎn)的性質(zhì). |
圓周角定理;全等三角形的判定與性質(zhì);等腰直角三角形;三角形中位線定理;旋轉(zhuǎn)的性質(zhì). |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com