【題目】如圖,在矩形ABCD中,E,F分別是邊AB,CD上的點,AE=CF,連接EF,BF;EF與對角線AC交于點O,且BE=BF,∠BEF=2∠BAC,FC=2,則AB的長為 .
【答案】6
【解析】解:如圖,連接BO,
∵四邊形ABCD是矩形,
∴DC∥AB,∠DCB=90°
∴∠FCO=∠EAO,
在△AOE和△COF中,
,
∴△AOE≌△COF,
∴OE=OF,OA=OC,
∵BF=BE,
∴BO⊥EF,∠BOF=90°,
∵∠FEB=2∠CAB=∠CAB+∠AOE,
∴∠EAO=∠EOA,
∴EA=EO=OF=FC=2,
在RT△BFO和RT△BFC中,
,
∴RT△BFO≌RT△BFC,
∴BO=BC,
在RT△ABC中,∵AO=OC,
∴BO=AO=OC=BC,
∴△BOC是等邊三角形,
∴∠BCO=60°,∠BAC=30°,
∴∠FEB=2∠CAB=60°,∵BE=BF,
∴△BEF是等邊三角形,
∴EB=EF=4,
∴AB=AE+EB=2+4=6.
所以答案是6.
【考點精析】本題主要考查了矩形的性質和相似三角形的判定與性質的相關知識點,需要掌握矩形的四個角都是直角,矩形的對角線相等;相似三角形的一切對應線段(對應高、對應中線、對應角平分線、外接圓半徑、內切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方才能正確解答此題.
科目:初中數學 來源: 題型:
【題目】如圖,Rt△ABC中,∠BAC=90°,AB=AC=2,BC=.點D從B點開始運動到C點結束(點D和B、C均不重合),DE交AC于E,∠ADE=45°,當△ADE是等腰三角形時,AE的長度為__________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(題文)直角三角形有一個非常重要的性質質:直角三角形斜邊上的中線等于斜邊的一半,比如:如圖1,Rt△ABC中,∠C=90°,D為斜邊AB中點,則CD=AD=BD=-AB.請你利用該定理和以前學過的知識解決下列問題:
在△ABC中,直線繞頂點A旋轉.
(1)如圖2,若點P為BC邊的中點,點B、P在直線的異側,BM⊥直線于點M,CN⊥直線于點N,連接PM、PN.求證:PM=PN;
(2)如圖3,若點B、P在直線的同側,其它條件不變,此時PM=PN還成立嗎?若成立,請給予證明;若不成立,請說明理由;
(3)如圖4,∠BAC=90°,直線旋轉到與BC垂直的位置,E為AB上一點且AE=AC,EN⊥于N,連接EC,取EC中點P,連接PM、PN,求證:PM⊥PN.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在□ABCD的形外分別作等腰直角△ABF和等腰直角△ADE,∠FAB=∠EAD=90°,
連結AC、EF.在圖中找一個與△FAE全等的三角形,并加以證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知在△ABC中,AB=AC=5,BC=6,AD是BC邊上的中線,四邊形ADBE是平行四邊形.
(1)求證:四邊形ADBE是矩形;
(2)求矩形ADBE的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知Rt△ABC中,∠C=90°,AC=8.BC=6,點P以每秒1個單位的速度從
A向C運動,同時點Q以每秒2個單位的速度從A→B→C方向運動,它們到C點后都
停止運動,設點P、Q運動的時間為t秒.
(Ⅰ)在運動過程中,請你用t表示P、Q兩點間的距離,并求出P、Q兩點間的距離
的最大值;
(Ⅱ)經過t秒的運動,求△ABC被直線PQ掃過的面積S與時間t的函數關系式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,∠BOC=9°,點A在OB上,且OA=1,按下列要求畫圖:
以A為圓心,1為半徑向右畫弧交OC于點A1,得第1條線段AA1;再以A1為圓心,1為半徑向右畫弧交OB于點A2,得第2條線段A1A2;再以A2為圓心,1為半徑向右畫弧交OC于點A3,得第3條線段A2A3;…這樣畫下去,直到得第n條線段,之后就不能再畫出符合要求的線段了,則n=______.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com