【題目】受“新冠”疫情的影響,某銷售商在網(wǎng)上銷售、兩種型號(hào)的“手寫板”,獲利頗豐.已知型,型手寫板進(jìn)價(jià)、售價(jià)和每日銷量如表格所示:

進(jìn)價(jià)(元/個(gè))

售價(jià)(元/個(gè))

銷量(個(gè)/日)

根據(jù)市場(chǎng)行情,該銷售商對(duì)型手寫板降價(jià)銷售,同時(shí)對(duì)型手寫板提高售價(jià),此時(shí)發(fā)現(xiàn)型手寫板每降低元就可多賣個(gè),型手寫板每提高元就少賣個(gè),要保持每天銷售總量不變,設(shè)其中型手寫板每天多銷售個(gè),每天總獲利的利潤(rùn)為

1)求之間的函數(shù)關(guān)系式并寫出的取值范圍;

2)要使每天的利潤(rùn)不低于元,直接寫出的取值范圍;

3)該銷售商決定每銷售一個(gè)型手寫板,就捐元給因“新冠疫情”影響的困難家庭,當(dāng)時(shí),每天的最大利潤(rùn)為元,求的值.

【答案】1),且x為整數(shù);(2,且x為整數(shù);(3

【解析】

1)設(shè)型手寫板每天多銷售個(gè),則B型手寫板每天少銷售個(gè),根據(jù)總獲利的利潤(rùn)等于銷售A型手寫板所獲利潤(rùn)加上銷售B型手寫板所獲利潤(rùn),根據(jù)每件銷售的利潤(rùn),每日的銷量都為非負(fù)數(shù)且為非負(fù)整數(shù)求出x的取值范圍;

2)結(jié)合(1)將總利潤(rùn)函數(shù)進(jìn)行配方,求出當(dāng)時(shí)的x值,結(jié)合圖象得到每天的利潤(rùn)不低于元時(shí)的x的取值范圍,進(jìn)而求解;

3)設(shè)捐款后每天的利潤(rùn)為元,則,然后利用二次函數(shù)的性質(zhì)進(jìn)行求解.

解:(1 ,

化簡(jiǎn)得,,

由題意知,,

解得,,

的取值范圍為為整數(shù);

2的取值范圍為,

理由如下:,

當(dāng)時(shí),,

,,

要使,由圖象知,;

,且為整數(shù);

3)設(shè)捐款后每天的利潤(rùn)為元,

,

對(duì)稱軸為

,

拋物線開口向下,當(dāng)時(shí),的增大而增大,

當(dāng)時(shí),最大,

,

解得,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,點(diǎn)D為邊BC上一點(diǎn),且ADAB,AEBC,垂足為點(diǎn)E.過點(diǎn)DDFAB,交邊AC于點(diǎn)F,連接EFEF2BDEC

(1)求證:△EDF∽△EFC

(2)如果,求證:ABBD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)團(tuán)委會(huì)為研究該校學(xué)生的課余活動(dòng)情況,采取抽樣的方法,從閱讀、運(yùn)動(dòng)、娛樂、其它等四個(gè)方面調(diào)查了若干名學(xué)生的興趣愛好,并將調(diào)查的結(jié)果繪制了如下的兩幅不完整的統(tǒng)計(jì)圖(如圖1,圖2),請(qǐng)你根據(jù)圖中提供的信息解答下列問題:

(1)在這次研究中,一共調(diào)查了多少名學(xué)生?

(2)“其它”在扇形圖中所占的圓心角是多少度?

(3)補(bǔ)全頻數(shù)分布折線圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形的一條對(duì)角線將這個(gè)四邊形分成兩個(gè)三角形,如果這兩個(gè)三角形相似(不全等),那么我們將這條對(duì)角線叫做這個(gè)四邊形的相似對(duì)角線.

(1)如圖1,四邊形ABCD中,∠DAB100°,∠DCB130°,對(duì)角線AC平分∠DAB,求證:AC是四邊形ABCD的相似對(duì)角線;

(2)如圖2,直線分別與xy軸相交于A,B兩點(diǎn),P為反比例函數(shù)y(k0)上的點(diǎn),若AO是四邊形ABOP的相似對(duì)角線,求反比例函數(shù)的解析式;

(3)如圖3,AC是四邊形ABCD的相似對(duì)角線,點(diǎn)C的坐標(biāo)為(3,1),ACx軸,∠BCA=∠DCA30°,連接BD,△BCD的面積為.過AC兩點(diǎn)的拋物線yax2+bx+c(a0)x軸交于E,F兩點(diǎn),記|m|AC+1,若直線ymx與拋物線恰好有3個(gè)交點(diǎn),求實(shí)數(shù)a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,以為直徑的交邊于點(diǎn)(點(diǎn)不與點(diǎn)重合),交邊于點(diǎn),過點(diǎn),垂足為

1)求證:的切線;

2)若,

①求的半徑;

②連接于點(diǎn),則_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣kx+m與雙曲線yx0)交于A、B兩點(diǎn),點(diǎn)A的橫坐標(biāo)為1,點(diǎn)B的縱坐標(biāo)為2,點(diǎn)Py軸上一動(dòng)點(diǎn),當(dāng)△PAB的周長(zhǎng)最小時(shí),點(diǎn)P的坐標(biāo)是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,CD為⊙O上的兩點(diǎn),∠BAC=∠DAC,過點(diǎn)C做直線EFAD,交AD的延長(zhǎng)線于點(diǎn)E,連接BC

1)求證:EF是⊙O的切線.

2)若∠CAO30°,BC2,求劣弧BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,、三點(diǎn)的坐標(biāo)分別為,,,點(diǎn)為線段上的一個(gè)動(dòng)點(diǎn),連接,過點(diǎn)軸于點(diǎn),當(dāng)點(diǎn)運(yùn)動(dòng)到時(shí),點(diǎn)隨之運(yùn)動(dòng),設(shè)點(diǎn)的坐標(biāo)為,則的取值范圍是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小王電子產(chǎn)品專柜以20/副的價(jià)格批發(fā)了某新款耳機(jī),在試銷的60天內(nèi)整理出了銷售數(shù)據(jù)如下

銷售數(shù)據(jù)(x)

售價(jià)()

日銷售量()

1x35

x+30

1002x

35x60

70

1002x

(1)若試銷階段每天的利潤(rùn)為W元,求出Wx的函數(shù)關(guān)系式;

(2)請(qǐng)問在試銷階段的哪一天銷售利潤(rùn)W可以達(dá)到最大值?最大值為多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案