【題目】如圖,在矩形ABCD中,對(duì)角線(xiàn)BD的垂直平分線(xiàn)MN與AD相交于點(diǎn)N,連接BM,DN.
(1)求證:四邊形BMDN是菱形;
(2)若AB=4,AD=8,求MD的長(zhǎng).
【答案】(1)見(jiàn)解析;(2)MD長(zhǎng)為5.
【解析】
(1)根據(jù)矩形性質(zhì)求出AD∥BC,推出∠MDO=∠NBO,∠DMO=∠BNO,證△DMO≌△BNO,推出OM=ON,得出平行四邊形BMDN,推出菱形BMDN;
(2)根據(jù)菱形性質(zhì)求出DM=BM,在Rt△AMB中,根據(jù)勾股定理得出BM2=AM2+AB2,即可列方程求得.
(1)證明:∵四邊形ABCD是矩形,
∴AD∥BC,∠A=90°,
∴∠MDO=∠NBO,∠DMO=∠BNO,
∵在△DMO和△BNO中,
∠DMO=∠BNO,∠MDO=∠NBO,OB=OD,
∴△DMO≌△BNO(AAS),
∴OM=ON,
∵OB=OD,
∴四邊形BMDN是平行四邊形,
∵MN⊥BD,
∴平行四邊形BMDN是菱形.
(2)∵四邊形BMDN是菱形,∴MB=MD,
設(shè)MD長(zhǎng)為x,則MB=DM=x,
在Rt△AMB中,BM2=AM2+AB2
即x2=(8-x)2+42,
解得:x=5,
答:MD長(zhǎng)為5.
故答案為:(1)見(jiàn)解析;(2)MD長(zhǎng)為5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在△ABC中,AB=AC,∠A=36°.
(1)作∠ABC的平分線(xiàn)BD,交AC于點(diǎn)D(用尺規(guī)作圖法,保留作圖痕跡,不要求寫(xiě)作法);
(2)在(1)條件下,比較線(xiàn)段DA與BC的大小關(guān)系(不要求證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知AC⊥BC于C,BC=a,CA=b,AB=c,下列圖形中⊙O與△ABC的某兩條邊或三邊所在的直線(xiàn)相切,則⊙O的半徑為的是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】附加題:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.
求 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分別為E,F(xiàn).
(1)求證:△ABE≌△CDF;
(2)若AC與BD交于點(diǎn)O,求證:AO=CO.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,一個(gè)點(diǎn)從數(shù)軸上的原點(diǎn)開(kāi)始,先向右移動(dòng)3個(gè)單位長(zhǎng)度,再向左移動(dòng)5個(gè)單位長(zhǎng)度,可以看到終點(diǎn)表示的數(shù)是-2,已知點(diǎn)A,B是數(shù)軸上的點(diǎn),請(qǐng)參照?qǐng)D并思考,完成下列各題.
(1)如果點(diǎn)A表示數(shù)-3,將點(diǎn)A向右移動(dòng)7個(gè)單位長(zhǎng)度,那么終點(diǎn)B表示的數(shù)是_____,A,B兩點(diǎn)間的距離是_____;
(2)如果點(diǎn)A表示數(shù)3,將A點(diǎn)向左移動(dòng)7個(gè)單位長(zhǎng)度,再向右移動(dòng)5個(gè)單位長(zhǎng)度,那么終點(diǎn)表示的數(shù)是_____,A,B兩點(diǎn)間的距離為_____;
(3)如果點(diǎn)A表示數(shù)-4,將A點(diǎn)向右移動(dòng)168個(gè)單位長(zhǎng)度,再向左移動(dòng)256個(gè)單位長(zhǎng)度,那么終點(diǎn)B表示的數(shù)是_____,A、B兩點(diǎn)間的距離是_____;
(4)一般地,如果A點(diǎn)表示的數(shù)為m,將A點(diǎn)向右移動(dòng)n個(gè)單位長(zhǎng)度,再向左移動(dòng)p個(gè)單位長(zhǎng)度,那么請(qǐng)你猜想終點(diǎn)B表示什么數(shù)?A,B兩點(diǎn)間的距離為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知平面直角坐標(biāo)系中兩定點(diǎn)A(﹣1,0)、B(4,0),拋物線(xiàn)y=ax2+bx﹣2(a≠0)過(guò)點(diǎn)A,B,頂點(diǎn)為C,點(diǎn)P(m,n)(n<0)為拋物線(xiàn)上一點(diǎn).
(1)求拋物線(xiàn)的解析式和頂點(diǎn)C的坐標(biāo);
(2)當(dāng)∠APB為鈍角時(shí),求m的取值范圍;
(3)若m>,當(dāng)∠APB為直角時(shí),將該拋物線(xiàn)向左或向右平移t(0<t<)個(gè)單位,點(diǎn)C、P平移后對(duì)應(yīng)的點(diǎn)分別記為C′、P′,是否存在t,使得首位依次連接A、B、P′、C′所構(gòu)成的多邊形的周長(zhǎng)最短?若存在,求t的值并說(shuō)明拋物線(xiàn)平移的方向;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,PA、PB為⊙O的切線(xiàn),M、N是PA、AB的中點(diǎn),連接MN交⊙O點(diǎn)C,連接PC交⊙O于D,連接ND交PB于Q,求證:MNQP為菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,證明定理:三角形的中位線(xiàn)平行于三角形的第三邊,且等于第三邊的一半.
已知:點(diǎn)D、E分別是△ABC的邊AB、AC的中點(diǎn).
求證:DE∥BC,DE=BC.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com