小明同學在東西方向的沿江大道A處,測得江中燈塔P在北偏東60°方向上,在A處正東400米的B處,測得江中燈塔P在北偏東30°方向上,則燈塔P到沿江大道的距離為
 
米.
分析:過點P作PD⊥AB于點D,根據(jù)已知可得△ABP是等腰三角形,再根據(jù)三角函數(shù)定義即可求得PD的長.
解答:精英家教網解:由已知得,∠A=30°,∠ABP=120°,
∴∠APB=30°.
∴AB=BP=400.
過點P作PD⊥AB于點D.
在直角△PBD中,∠PBD=60°,
∴PD=PB•sin60°=200
3
(米).
點評:本題主要考查了方向角含義,正確記憶三角函數(shù)的定義是解決本題的關鍵.解一般三角形的問題一般可以轉化為解直角三角形的問題,解決的方法就是作高線.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,小明同學在東西方向的環(huán)海路A處,測得海中燈塔P在北偏東60°方向上,在A處東500米的B處,測得海中燈塔P在北偏東30°方向上,則燈塔P到環(huán)海路的距離PC=
 
米.(用根號表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,小明同學在東西方向的環(huán)海路A處,測得海中燈塔P在北偏東60°方向上,在A處東500米的B處,測得海中燈塔P在北偏東30°方向上,則燈塔P到環(huán)海路的距離PC=(  )米.
A、250
B、500
C、250
3
D、500
3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,小明同學在東西方向的環(huán)海路A處,測得海中燈塔P在北偏東60°方向上,在A處正東500米的B處,測得海中燈塔P在北偏東30°方向上,則燈塔P到環(huán)海路的距離PC等于多少米?

查看答案和解析>>

科目:初中數(shù)學 來源:2012屆北京市通州區(qū)九年級上學期期末考試數(shù)學卷 題型:解答題

如圖,小明同學在東西方向的環(huán)海路A處,測得海中燈塔P在北偏東60°方向上,在A處正東500米的B處,測得海中燈塔P在北偏東30°方向上,則燈塔P到環(huán)海路的距離PC等于多少米?

查看答案和解析>>

同步練習冊答案