【題目】如圖,四邊形ABCD中,∠ABC=30°,∠ADC=60°,AD=DC.
(操作)(1)將△ABD繞點(diǎn)D沿順時(shí)針?lè)较蛐D(zhuǎn)60°,在圖中畫(huà)出旋轉(zhuǎn)后的三角形.
(探究)(2)結(jié)合所畫(huà)圖形探究BD與AB,BC之間的數(shù)量關(guān)系,并證明你的結(jié)論.
(應(yīng)用)(3)若AB=6,BC=8,試求四邊形ABCD的面積.
【答案】(1)見(jiàn)解析;(2)BD2=AB2+BC2,見(jiàn)解析;(3)
【解析】
(1)分別利用旋轉(zhuǎn)的旋轉(zhuǎn)畫(huà)出A,B旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn),而D為旋轉(zhuǎn)中心與自身對(duì)應(yīng),然后順次連接三對(duì)應(yīng)點(diǎn)得到答案.
(2)連接BE,利用旋轉(zhuǎn)的旋轉(zhuǎn)證明△DBE是等邊三角形,再證明為直角三角形,利用等量代換可以得到答案.
(3)利用(2)的結(jié)論求BD,再求等邊三角形DBE的面積,直角三角形BEC的面積,利用圖形旋轉(zhuǎn)前后面積不變,把四邊形的面積轉(zhuǎn)化為等邊三角形DBE的面積減去直角三角形BEC的面積即可.
(1)如圖,利用旋轉(zhuǎn)性質(zhì)作 ,然后在角的邊上截取,得A的對(duì)應(yīng)點(diǎn)C,B的對(duì)應(yīng)點(diǎn)E,順次連接D,C,E得到旋轉(zhuǎn)后的.
【探究】
(2)BD與AB,BC數(shù)量關(guān)系:BD2=AB2+BC2
理由:連接BE
由旋轉(zhuǎn)可知
∠DCE=∠A,CE=AB
DE=DB,∠BDE=60°,
∴△DBE是等邊三角形
∴BE=DB
∵∠ADC+∠ABC=60°+30°=90°
∴∠A +∠DCB=360°-90°=270°
∠DCE +∠DCB=270°
∴∠ECB=90°
∴BC2+CE2=BE2
∴BD2=AB2+BC2
【應(yīng)用】
(3)因?yàn)锽D2=AB2+BC2 AB=6,BC=8
所以BD=10,又△DBE是等邊三角形
所以,
因?yàn)椤?/span>ECB=90°
所以△BCE的面積為24,
由旋轉(zhuǎn)可知:
S四邊形ABCD= S△DBE- S△BCE
=
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為迎接2019年的到來(lái),銅陵萬(wàn)達(dá)廣場(chǎng)某商鋪將進(jìn)價(jià)為40元的禮盒按50元售出時(shí),能賣出500盒.商鋪發(fā)現(xiàn)這種禮盒每漲價(jià)0.1元時(shí),其銷量就減少1盒.
(1)若該商鋪計(jì)劃賺得9000元的利潤(rùn),售價(jià)應(yīng)定為多少元?
(2)物價(jià)部門(mén)規(guī)定:該禮盒售價(jià)不得超過(guò)進(jìn)價(jià)的1.5倍.問(wèn):此時(shí)禮盒售價(jià)定為多少元,才能使得商鋪的獲利最大?且最大利潤(rùn)為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某電子廠商投產(chǎn)一種新型電子產(chǎn)品,每件制造成本為16元,試銷過(guò)程中發(fā)現(xiàn),每月銷售量y(萬(wàn)件)與銷售單價(jià)x(元)之間的關(guān)系可以近似地看作一次函數(shù)y=﹣2x+100.(利潤(rùn)=售價(jià)﹣制造成本)
(1)寫(xiě)出每月的利潤(rùn)z(萬(wàn)元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式;
(2)如果廠商每月的制造成本不超過(guò)480萬(wàn)元,那么當(dāng)銷售單價(jià)為多少元時(shí),廠商每月獲得的利潤(rùn)最大?最大利潤(rùn)為多少萬(wàn)元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰Rt△ABC中,∠C=90°,AC=4,矩形DEFG的頂點(diǎn)D、G分別在AC、BC上,邊EF在AB上.
(1)求證:△AED∽△DCG;
(2)若矩形DEFG的面積為4,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖甲,已知ED是△FBC的中位線,沿線段ED將△FED剪下后拼接在圖乙中△BEA的位置.
(1)從△FED到△BEA的圖形變換,可以認(rèn)為是(填平移或軸對(duì)稱或旋轉(zhuǎn))變換;
(2)試判斷圖乙中四邊形ABCD的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某超市預(yù)測(cè)某飲料有發(fā)展前途,用1600元購(gòu)進(jìn)一批飲料,面市后果然供不應(yīng)求,又用6000元購(gòu)進(jìn)這批飲料,第二批飲料的數(shù)量是第一批的3倍,但單價(jià)比第一批貴2元.
(1)第一批飲料進(jìn)貨單價(jià)多少元?
(2)若二次購(gòu)進(jìn)飲料按同一價(jià)格銷售,兩批全部售完后,獲利不少于1200元,那么銷售單價(jià)至少為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的不等式組有且只有四個(gè)整數(shù)解,又關(guān)于x的分式方程﹣2=有正數(shù)解,則滿足條件的整數(shù)k的和為( 。
A. 5 B. 6 C. 7 D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 如圖,四邊形ABCD是平行四邊形,以AB為直徑的⊙O經(jīng)過(guò)點(diǎn)D,E是⊙O上一點(diǎn),且∠AED=45°.
(1)判斷CD與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若⊙O半徑為4cm,AE=6cm,求∠ADE的正切值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了提高學(xué)生閱讀能力,我區(qū)某校倡議八年級(jí)學(xué)生利用雙休日加強(qiáng)課外閱讀,為了解同學(xué)們閱讀的情況,學(xué)校隨機(jī)抽查了部分同學(xué)周末閱讀時(shí)間,并且得到數(shù)據(jù)繪制了不完整的統(tǒng)計(jì)圖,根據(jù)圖中信息回答下列問(wèn)題:
(1)將條形統(tǒng)計(jì)圖補(bǔ)充完整;被調(diào)查的學(xué)生周末閱讀時(shí)間眾數(shù)是多少小時(shí),中位數(shù)是多少小時(shí);
(2)計(jì)算被調(diào)查學(xué)生閱讀時(shí)間的平均數(shù);
(3)該校八年級(jí)共有500人,試估計(jì)周末閱讀時(shí)間不低于1.5小時(shí)的人數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com