【題目】已知一次函數(shù)y=﹣2x﹣2.
(1)根據(jù)關(guān)系式畫出函數(shù)的圖象.
(2)求出圖象與x軸、y軸的交點(diǎn)A、B的坐標(biāo).
(3)求A、B兩點(diǎn)間的距離.
(4)求出△AOB的面積.
(5)y的值隨x值的增大怎樣變化?

【答案】
(1)解:如圖:


(2)解:當(dāng)y=0時(shí),﹣2x﹣2=0,解得x=﹣1,即A(﹣1,0);

當(dāng)x=0時(shí),y=﹣2,即B(0,﹣2);


(3)解:由勾股定理得

AB= = ;


(4)解:SAOB= ×1×2=1;
(5)解:由一次函數(shù)y=﹣2x﹣2的系數(shù)k=﹣2<0可知:y隨著x的增大而減。
【解析】(1)根據(jù)描點(diǎn)法,可得函數(shù)圖象;(2)根據(jù)自變量與函數(shù)值的對(duì)應(yīng)關(guān)系,可得答案;(3)根據(jù)勾股定理,可得答案;(4)根據(jù)三角形的面積公式,可得答案;(5)根據(jù)一次還是的性質(zhì)即可求得.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用一次函數(shù)的性質(zhì)和一次函數(shù)的圖象和性質(zhì)的相關(guān)知識(shí)可以得到問題的答案,需要掌握一般地,一次函數(shù)y=kx+b有下列性質(zhì):(1)當(dāng)k>0時(shí),y隨x的增大而增大(2)當(dāng)k<0時(shí),y隨x的增大而減;一次函數(shù)是直線,圖像經(jīng)過仨象限;正比例函數(shù)更簡(jiǎn)單,經(jīng)過原點(diǎn)一直線;兩個(gè)系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負(fù)來左下展,變化規(guī)律正相反;k的絕對(duì)值越大,線離橫軸就越遠(yuǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】作圖題:如圖,正方形網(wǎng)格中的每個(gè)小正方形的邊長都是1,每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn).△AOB的三個(gè)頂點(diǎn)A,O,B都在格點(diǎn)上.

(1)畫出△AOB關(guān)于點(diǎn)O成中心對(duì)稱的三角形;
(2)畫出△AOB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90后得到的三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)mn是一元二次方程x2+3x70的兩個(gè)根,則m2+4m+n=(  )

A.3B.4C.4D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】化簡(jiǎn)7(x+y)﹣5(x+y)的結(jié)果是( 。

A. 2x+2y B. 2x+y C. x+2y D. 2x﹣2y

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,AB∥DC,AC和BD相交于點(diǎn)O,E是CD上一點(diǎn),F(xiàn)在OD上一點(diǎn),且∠1=∠A.
(1)求證:FE∥OC;
(2)若∠DFE=70°,求∠BOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ADBC,ABBC,AB=3.點(diǎn)E為射線 BC上一個(gè)動(dòng)點(diǎn),連接AE,將ABE沿AE折疊,點(diǎn)B落在點(diǎn)B′處,過點(diǎn)B′AD的垂線,分別交AD,BC于點(diǎn)M,N.當(dāng)點(diǎn)B′為線段MN的三等分點(diǎn)時(shí),BE的長為__________ .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格紙每個(gè)小方格都是邊長為1個(gè)單位長度的正方形,在平面直角坐標(biāo)系中,點(diǎn)A(1,0),B(5,0),C(3,3),D(1,4).

(1)描出A、B、C、D四點(diǎn)的位置,并順次連接A、B、C、D;
(2)四邊形ABCD的面積是;(直接寫出結(jié)果)
(3)把四邊形ABCD向左平移6個(gè)單位,再向下平移1個(gè)單位得到四邊形A′B′C′D′在圖中畫出四邊形A′B′C′D′,并寫出A′B′C′D′的坐標(biāo).[(1)(3)問的圖畫在同一坐標(biāo)系中].

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=10,BC=12,BC邊上的中線AD=8.
(1)證明:△ABC為等腰三角形;
(2)點(diǎn)H在線段AC上,試求AH+BH+CH的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知線段a2cmb8cm,它們的比例中項(xiàng)c是(

A.16cmB.4cmC.±4cmD.±16cm

查看答案和解析>>

同步練習(xí)冊(cè)答案