【題目】水果基地為了選出適應(yīng)市場需求的小西紅柿秧苗,在條件基本相同的情況下,把兩個品種的小西紅柿秧苗各300株分別種植在甲、乙兩個大棚,對市場最為關(guān)注的產(chǎn)量和產(chǎn)量的穩(wěn)定性進行了抽樣調(diào)查,過程如下:
收集數(shù)據(jù)從甲、乙兩個大棚中分別隨機收集了相同生產(chǎn)周期內(nèi)25株秧苗生長出的小西紅柿的個數(shù):
甲:26,32,40,51,44,74,44,63,73,74,81,54,62,41,33,54,43,34,51,63,64,73,64,54,33
乙:27,35,46,55,48,36,47,68,82,48,57,66,75,27,36,57,57,66,58,61,71,38,47,46,71
整理數(shù)據(jù)按如下分組整理樣本數(shù)據(jù):
個數(shù)(x) 株數(shù)(株) 大棚 | 25≤x<35 | 35≤x<45 | 45≤x<55 | 55≤x<65 | 65≤x<75 | 75≤x<85 |
甲 | 5 |
| 5 |
| 4 | 1 |
乙 | 2 | 4 |
| 6 | 5 | 2 |
(說明:45個以下為產(chǎn)量不合格,45個及以上為產(chǎn)量合格,其中45≤x<65個為產(chǎn)量良好,65≤x<85個為產(chǎn)量優(yōu)秀)
分析數(shù)據(jù)兩組樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和方差如下表所示:
大棚 | 平均數(shù) | 眾數(shù) | 方差 |
甲 | 53 |
| 236.24 |
乙 | 53 | 57 | 215.04 |
得出結(jié)論
(1)補全上述表格;
(2)可以推斷出 大棚的小西紅柿秩苗品種更適應(yīng)市場需求,理由為 (至少從兩個不同的角度說明推斷的合理性);
(3)估計乙大棚的300株小西紅柿秧苗中產(chǎn)量優(yōu)秀的有多少株?
【答案】(1)5,5,6,54;(2)乙,乙的方差較小,眾數(shù)比較大;(3)84株
【解析】
(1)利用劃計法統(tǒng)計即可.
(2)從平均數(shù),眾數(shù),方差三個方面分析即可.
(3)利用樣本估計總體的思想解決問題即可.
(1)甲:35≤x<45時,小西紅柿的株數(shù)為5,55≤x<65時,小西紅柿的株數(shù)為5.甲的眾數(shù)為54,乙:45≤<55時,小西紅柿的株數(shù)為6.
故答案為:5,5,6,54.
(2)選:乙.
理由:乙的方差較小,眾數(shù)比較大.
故答案為:乙,乙的方差較小,眾數(shù)比較大.
(3)30084(株)
答:估計乙大棚的300株小西紅柿秧苗中產(chǎn)量優(yōu)秀的有84株.
科目:初中數(shù)學 來源: 題型:
【題目】為迎接2022年冬奧會,鼓勵更多的學生參與到志愿服務(wù)中來,甲、乙兩所學校組織了志愿服務(wù)團隊選拔活動,經(jīng)過初選,兩所學校各有400名學生進入綜合素質(zhì)展示環(huán)節(jié).為了了解兩所學校這些學生的整體情況,從兩校進人綜合素質(zhì)展示環(huán)節(jié)的學生中分別隨機抽取了50名學生的綜合素質(zhì)展示成績(百分制),并對數(shù)據(jù)(成績)進行整理、描述和分析.下面給出了部分信息.
a.甲學校學生成績的頻數(shù)分布直方圖如下(數(shù)據(jù)分成6組:,,,,,);
b.甲學校學生成績在這一組的是:
80 80 81 81.5 82 83 83 84
85 86 86.5 87 88 88.5 89 89
c.乙學校學生成績的平均數(shù)、中位數(shù)、眾數(shù)、優(yōu)秀率(85分及以上為優(yōu)秀)如下:
平均數(shù) | 中位數(shù) | 眾數(shù) | 優(yōu)秀率 |
83.3 | 84 | 78 | 46% |
根據(jù)以上信息,回答下列問題:
(1)甲學校學生A,乙學校學生B的綜合素質(zhì)展示成績同為83分,這兩人在本校學生中的綜合素質(zhì)展示排名更靠前的是______(填“A”或“B”);
(2)根據(jù)上述信息,推斷_____學校綜合素質(zhì)展示的水平更高,理由為_____(至少從兩個不同的角度說明推斷的合理性);
(3)若每所學校綜合素質(zhì)展示的前120名學生將被選入志愿服務(wù)團隊,預(yù)估甲學校分數(shù)至少達到____分的學生才可以入選.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】解不等式組
請結(jié)合題意填空,完成本題的解答.
(Ⅰ)解不等式①,得____________;
(Ⅱ)解不等式②,得____________;
(Ⅲ)把不等式①和②的解集在數(shù)軸上表示出來:
(Ⅳ)原不等式組的解集為_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著中國經(jīng)濟的快速發(fā)展以及科技水平的飛速提高,中國高鐵正迅速崛起.高鐵大大縮短了時空距離,改變了人們的出行方式.如圖,A,B兩地被大山阻隔,由A地到B地需要繞行C地,若打通穿山隧道,建成A,B兩地的直達高鐵,可以縮短從A地到B地的路程.已知:∠CAB=30°,∠CBA=45°,AC=640公里,求隧道打通后與打通前相比,從A地到B地的路程將約縮短多少公里?(參考數(shù)據(jù):≈1.7,≈1.4)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某數(shù)學活動小組在研究三角形拓展圖形的性質(zhì)時,經(jīng)歷了如下過程:
●操作發(fā)現(xiàn)
在等腰△ABC中,AB=AC,分別以AB和AC為腰,向△ABC的外側(cè)作等腰直角三角形,如圖①所示,連接DE,其中F是DE的中點,連接AF,則下列結(jié)論正確的是 (填序號即可)
①AF=BC:②AF⊥BC;③整個圖形是軸對稱圖形;④DE∥BC、
●數(shù)學思考
在任意△ABC中,分別以AB和AC為腰,向△ABC的外側(cè)作等腰直角三角形,如圖②所示,連接DE,其中F是DE的中點,連接AF,則AF和BC有怎樣的數(shù)量和位置關(guān)系?請給出證明過程
●類比探索
在任意△ABC中,仍分別以AB和AC為腰,向△ABC的內(nèi)側(cè)作等腰直角三角形,如圖③所示,連接DE,其中F是DE的中點,連接AF,試判斷AF和BC的數(shù)量和位置關(guān)系是否發(fā)生改變?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,,點在上,,的圓心在線段上,且⊙與邊,都相切.若反比例函數(shù)()的圖象經(jīng)過圓心,則________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為配合全市“禁止焚燒秸稈”工作,某學校舉行了“禁止焚燒秸稈,保護環(huán)境,從我做起”為主題的演講比賽. 賽后組委會整理參賽同學的成績,并制作了如下不完整的頻數(shù)分布表和頻數(shù)分布直方圖.
分數(shù)段(分數(shù)為x分) | 頻數(shù) | 百分比 |
60≤x<70 | 8 | 20% |
70≤x<80 | a | 30% |
80≤x<90 | 16 | b% |
90≤x<100 | 4 | 10% |
請根據(jù)圖表提供的信息,解答下列問題:
(1)表中的a= ,b= ;請補全頻數(shù)分布直方圖;
(2)若用扇形統(tǒng)計圖來描述成績分布情況,則分數(shù)段70≤x<80對應(yīng)扇形的圓心角的度數(shù)是 ;
(3)競賽成績不低于90分的4名同學中正好有2名男同學,2名女同學. 學校從這4名同學中隨機抽2名同學接受電視臺記者采訪,則正好抽到一名男同學和一名女同學的概率為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】從沈陽到大連的火車原來的平均速度是180千米/時,經(jīng)過兩次提速后平均速度為217.8干米/時,這兩次提速的百分率相同.
(1)求該火車每次提速的百分率;
(2)填空:若沈陽到大連的鐵路長396千米,則第一次提速后從甲地到乙地所用的時間比提速前少用了 小時.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com