如圖,△ABC的角平分線BECF相交于一點O,求證:點OA的平分線上.

答案:
解析:

證明:過點OOGBCOIABOHAC,

因為O在∠ABC的平分線上,

所以OIOG

因為O在∠ACB的平分線上,

所以OGOH

所以OIOH

OIABOHAC,

所以OA的平分線上.


提示:

考慮過點OOGBCOIAB、OHAC,由于O在∠ABC的平分線上可以得到OIOG,同理得到OGOH,進而得到OHOI,于是OA的平分線上.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

23、如圖,BD是∠ABC的平分線,ED∥BC,∠4=∠3,則EF也是∠AED的平分線.
完成下列推理過程:
∵BD是∠ABC的平分線,(已知)
∴∠1=∠2(角平線的定義)
∵ED∥BC(已知)
∴∠3=∠2(
兩直線平行,內(nèi)錯角相等

∴∠1=∠
3
(等量代換),
又∵∠4=∠3(已知)
∴EF∥BD(
內(nèi)錯角相等,兩直線平行
),
∴∠6=∠1(
兩直線平行,同位角相等

∴∠6=∠4(
等量代換
),
∴EF是∠AED的平分線(角平分線的定義)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖:在△ABC中,∠C=90°,DF⊥AB,垂足為F,DE=BD,CE=FB.
求證:點D在∠CAB的角平線上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

16、如圖,在△ABC中,AD是△ABC中∠CAB的角平分錢,要使△ADC≌△ADE,需要添加一個條件,這個條件是
AC=AE或∠ADC=∠ADE或∠ACD=∠AED

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:044

如圖,△ABC沿射線BC的方向平移一定距離后成為△DEF.

(1)找出圖中由于平稱而產(chǎn)生的相等的線段,并指出圖中的對應(yīng)線段及對應(yīng)角;

(2)你能從對應(yīng)角相等找出圖中互相平行的線段嗎?說說你的做法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖:在△ABC中,∠C=90°,DF⊥AB,垂足為F,DE=BD,CE=FB.
求證:點D在∠CAB的角平線上.

查看答案和解析>>

同步練習(xí)冊答案