【題目】如圖,拋物線yax2+bx+3(a≠0)的對(duì)稱軸為直線x=﹣1,拋物線交x軸于A、C兩點(diǎn),與直線yx1交于A、B兩點(diǎn),直線AB與拋物線的對(duì)稱軸交于點(diǎn)E

(1)求拋物線的解板式.

(2)點(diǎn)P在直線AB上方的拋物線上運(yùn)動(dòng),若△ABP的面積最大,求此時(shí)點(diǎn)P的坐標(biāo).

(3)在平面直角坐標(biāo)系中,以點(diǎn)B、EC、D為頂點(diǎn)的四邊形是平行四邊形,請(qǐng)直接寫出符合條件點(diǎn)D的坐標(biāo).

【答案】(1)y=﹣x22x+3(2)點(diǎn)P(,)(3)符合條件的點(diǎn)D的坐標(biāo)為D1(0,3),D2(6,﹣3),D3(2,﹣7)

【解析】

(1)y0,求出點(diǎn)A的坐標(biāo),根據(jù)拋物線的對(duì)稱軸是x=﹣1,求出點(diǎn)C的坐標(biāo),再根據(jù)待定系數(shù)法求出拋物線的解析式即可;

(2)設(shè)點(diǎn)P(m,﹣m22m+3),利用拋物線與直線相交,求出點(diǎn)B的坐標(biāo),過點(diǎn)PPFy軸交直線AB于點(diǎn)F,利用SABPSPBF+SPFA,用含m的式子表示出ABP的面積,利用二次函數(shù)的最大值,即可求得點(diǎn)P的坐標(biāo);

(3)求出點(diǎn)E的坐標(biāo),然后求出直線BC、直線BE、直線CE的解析式,再根據(jù)以點(diǎn)B、E、C、D為頂點(diǎn)的四邊形是平行四邊形,得到直線D1D2、直線D1D3、直線D2D3的解析式,即可求出交點(diǎn)坐標(biāo).

解:(1)y0,可得:x10,解得:x1,

∴點(diǎn)A(10),

∵拋物線yax2+bx+3(a≠0)的對(duì)稱軸為直線x=﹣1

∴﹣1×21=﹣3,即點(diǎn)C(3,0),

,解得:

∴拋物線的解析式為:y=﹣x22x+3

(2)∵點(diǎn)P在直線AB上方的拋物線上運(yùn)動(dòng),

∴設(shè)點(diǎn)P(m,﹣m22m+3)

∵拋物線與直線yx1交于A、B兩點(diǎn),

,解得:

∴點(diǎn)B(4,﹣5),

如圖,過點(diǎn)PPFy軸交直線AB于點(diǎn)F,

則點(diǎn)F(m,m1)

PF=﹣m22m+3m+1=﹣m23m+4,

SABPSPBF+SPFA

(m23m+4)(m+4)+(m23m+4)(1m)

-m+ 2+

∴當(dāng)m時(shí),P最大,

∴點(diǎn)P(,).

(3)當(dāng)x=﹣1時(shí),y=﹣11=﹣2

∴點(diǎn)E(1,﹣2),

如圖,直線BC的解析式為y5x+15,直線BE的解析式為yx1,直線CE的解析式為y=﹣x3,

∵以點(diǎn)B、C、ED為頂點(diǎn)的四邊形是平行四邊形,

∴直線D1D3的解析式為y5x+3,直線D1D2的解析式為yx+3,直線D2D3的解析式為y=﹣x9

聯(lián)立 D1(0,3),

同理可得D2(6,﹣3),D3(2,﹣7),

綜上所述,符合條件的點(diǎn)D的坐標(biāo)為D1(03),D2(6,﹣3),D3(2,﹣7)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,OAB邊上一點(diǎn),⊙OABEF兩點(diǎn),BC切⊙O于點(diǎn)D,且CD=EF=1

(1)求證:⊙OAC相切.

(2)求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)O是平行四邊形ABCD的對(duì)稱中心,ADAB,EF分別是AB邊上的點(diǎn),EFAB;G、H分別是BC邊上的點(diǎn),GHBC;S1,S2分別表示EOFGOH的面積,S1,S2之間的等量關(guān)系是______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,過點(diǎn)C(2,1)分別作x軸、y軸的平行線,交直線y=﹣x+4B、A兩點(diǎn),若二次函數(shù)y=ax2+bx+c的圖象經(jīng)過坐標(biāo)原點(diǎn)O,且頂點(diǎn)在矩形ADBC內(nèi)(包括邊上),則a的取值范圍是____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,∠DAB45°,AB2,P為線段AB上一動(dòng)點(diǎn),且不與點(diǎn)A重合,過點(diǎn)PPEABAD于點(diǎn)E,將∠A沿PE折疊,點(diǎn)A落在直線AB上點(diǎn)F處,連接DF、CF,當(dāng)△CDF為等腰三角形時(shí),AP的長(zhǎng)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線與過點(diǎn)(0-3)且平行于x軸的直線相交于點(diǎn)、,與軸交于點(diǎn)C,若 為直角,則a=_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線x軸交于點(diǎn)A,B(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C

1)點(diǎn)A的坐標(biāo)為_____,點(diǎn)C的坐標(biāo)為______;

2)如圖,點(diǎn)M在拋物線位于A、C兩點(diǎn)間的部分(與AC兩點(diǎn)不重合),過點(diǎn)MPMAC,與x軸正半軸交于點(diǎn)P,連接PC,過點(diǎn)MMN平行于x軸,交PC于點(diǎn)N

①若點(diǎn)NPC的中點(diǎn),求出PM的長(zhǎng);

②當(dāng)MN=NP時(shí),求PC的長(zhǎng)以及點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 如圖,在矩形ABCD中,AB2BC4,把矩形折疊,使點(diǎn)D與點(diǎn)B重合,點(diǎn)C落在點(diǎn)E處,則折痕FG的長(zhǎng)為(  )

A. 2.5B. 3C. D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知梯形中,,,是邊上的點(diǎn),且,于點(diǎn).

求證:

當(dāng)時(shí),求證:.

查看答案和解析>>

同步練習(xí)冊(cè)答案