【題目】我們知道,在平面內(nèi),如果一個(gè)圖形繞著一個(gè)定點(diǎn)旋轉(zhuǎn)一定的角度后能與自身重合,那么就稱這個(gè)圖形是旋轉(zhuǎn)對(duì)稱圖形,轉(zhuǎn)的這個(gè)角稱為這個(gè)圖形的一個(gè)旋轉(zhuǎn)角.例如,正方形繞著它的對(duì)角線的交點(diǎn)旋轉(zhuǎn)后能與自身重合所以正方形是旋轉(zhuǎn)對(duì)稱圖形,它有一個(gè)旋轉(zhuǎn)角為.
判斷下列說(shuō)法是否正確(在相應(yīng)橫線里填上“對(duì)”或“錯(cuò)”)
①正五邊形是旋轉(zhuǎn)對(duì)稱圖形,它有一個(gè)旋轉(zhuǎn)角為.________
②長(zhǎng)方形是旋轉(zhuǎn)對(duì)稱圖形,它有一個(gè)旋轉(zhuǎn)角為.________
填空:下列圖形中時(shí)旋轉(zhuǎn)對(duì)稱圖形,且有一個(gè)旋轉(zhuǎn)角為的是________.(寫出所有正確結(jié)論的序號(hào))
①正三角形②正方形③正六邊形④正八邊形
寫出兩個(gè)多邊形,它們都是旋轉(zhuǎn)對(duì)稱圖形,都有一個(gè)旋轉(zhuǎn)角為,其中一個(gè)是軸對(duì)稱圖形,但不是中心對(duì)稱圖形;另一個(gè)既是軸對(duì)稱圖形,又是中心對(duì)稱圖形.
【答案】(1)對(duì),對(duì);(2)①③;(3).
【解析】
(1)根據(jù)題意旋轉(zhuǎn)角的定義,即可作出判斷;
(2)分別求出幾種圖形的旋轉(zhuǎn)角,即可得出答案.
(3)將72°當(dāng)作最小旋轉(zhuǎn)角,進(jìn)行計(jì)算即可.
(1)①,
∴正五邊形是旋轉(zhuǎn)對(duì)稱圖形,它有一個(gè)旋轉(zhuǎn)角為144°,說(shuō)法正確;
②=90°,
∴長(zhǎng)方形是旋轉(zhuǎn)對(duì)稱圖形,它有一個(gè)旋轉(zhuǎn)角為180°,說(shuō)法正確;
(2)①正三角形的最小旋轉(zhuǎn)角為=120°;
②正方形的最小旋轉(zhuǎn)角為=90°;
③正六邊形的最小旋轉(zhuǎn)角為=60°;
④正八邊形的最小旋轉(zhuǎn)角為=45°;
則有一個(gè)旋轉(zhuǎn)角為120°的是①③.
(3)=72°,
則正五邊形是滿足有一個(gè)旋轉(zhuǎn)角為72°,是軸對(duì)稱圖形,但不是中心對(duì)稱圖形;
正十邊形有一個(gè)旋轉(zhuǎn)角為72°,既是軸對(duì)稱圖形,又是中心對(duì)稱圖形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D為直線BC上一動(dòng)點(diǎn)(點(diǎn)D不與B,C重合),以AD為邊在AD右側(cè)作正方形ADEF,連接CF.
(1)觀察猜想
如圖1,當(dāng)點(diǎn)D在線段BC上時(shí),
①BC與CF的位置關(guān)系,
②BC,CD,CF之間的數(shù)量關(guān)系為;
(2)數(shù)學(xué)思考
如圖2,當(dāng)點(diǎn)D在線段CB的延長(zhǎng)線上時(shí),結(jié)論①,②是否仍然成立?若成立,請(qǐng)給予證明;
若不成立,請(qǐng)你寫出正確結(jié)論再給予證明;
(3)拓展延伸
如圖3,當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上時(shí),延長(zhǎng)BA交CF于點(diǎn)G,連接GE.若已知AB=2,CD=BC,求CF,EG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,,,點(diǎn)在斜邊所在的直線上,,線段關(guān)于對(duì)稱的線段為,連接、,則的面積為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司實(shí)行年工資制,職工的年工資由基礎(chǔ)工資、住房補(bǔ)貼和醫(yī)療費(fèi)三項(xiàng)組成,具體規(guī)定如下:
項(xiàng)目 | 第一年的工資(萬(wàn)元) | 一年后的計(jì)算方法 |
基礎(chǔ)工資 | 1 | 每年的增長(zhǎng)率相同 |
住房補(bǔ)貼 | 0.04 | 每年增加0.04 |
醫(yī)療費(fèi) | 0.1384 | 固定不變 |
(1)設(shè)基礎(chǔ)工資每年增長(zhǎng)率為x,用含x的代數(shù)式表示第三年的基礎(chǔ)工資為 萬(wàn)元;
(2)某人在公司工作了3年,他算了一下這3年拿到的住房補(bǔ)貼和醫(yī)療費(fèi)正好是這3年基礎(chǔ)工資總額的18 %,問(wèn)基礎(chǔ)工資每年的增長(zhǎng)率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩名隊(duì)員參加射擊訓(xùn)練,成績(jī)分別被制成下列兩個(gè)統(tǒng)計(jì)圖:
根據(jù)以上信息,整理分析數(shù)據(jù)如下:
平均成績(jī)/環(huán) | 中位數(shù)/環(huán) | 眾數(shù)/環(huán) | 方差 | |
甲 | ||||
乙 |
(1)_ ; ; ;
(2)填空:(填“甲”或“乙”),
①從平均數(shù)和中位數(shù)的角度來(lái)比較,成績(jī)較好的是 ;
②從平均數(shù)和眾數(shù)的角度來(lái)比較,成績(jī)較好的是 ;
③成績(jī)相對(duì)較穩(wěn)定的是 ;
(3)若環(huán)以上有希望奪冠,選派其中一名參賽,你認(rèn)為應(yīng)選 隊(duì)員.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(定義學(xué)習(xí))
定義:如果四邊形有一組對(duì)角為直角,那么我們稱這樣的四邊形為“對(duì)直四邊形”
(判斷嘗試)
在①梯形;②矩形:③菱形中,是“對(duì)直四邊形”的是哪一個(gè). (填序號(hào))
(操作探究)
在菱形ABCD中,于點(diǎn)E,請(qǐng)?jiān)谶?/span>AD和CD上各找一點(diǎn)F,使得以點(diǎn)A、E、C、F組成的四邊形為“對(duì)直四邊形”,畫出示意圖,并直接寫出EF的長(zhǎng),
(實(shí)踐應(yīng)用)
某加工廠有一批四邊形板材,形狀如圖所示,若AB=3米,AD=1米,
.現(xiàn)根據(jù)客戶要求,需將每張四邊形板材進(jìn)一步分割成兩個(gè)等腰三角形板材和一個(gè)“對(duì)直四邊形"板材,且這兩個(gè)等腰三角形的腰長(zhǎng)相等,要求材料充分利用無(wú)剩余.求分割后得到的等腰三角形的腰長(zhǎng),
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是等邊三角形,AD是BC邊上的高,E是AC的中點(diǎn),P是AD上的一個(gè)動(dòng)點(diǎn),當(dāng)PC與PE的和最小時(shí),∠CPE的度數(shù)是( )
A.30°B.45°C.60°D.90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】四座城市A,B,C,D分別位于一個(gè)邊長(zhǎng)100km的大正方形的四個(gè)頂點(diǎn),由于各城市之間的商業(yè)往來(lái)日益頻繁,于是政府決定修建公路網(wǎng)連接它們,根據(jù)實(shí)際,公路總長(zhǎng)設(shè)計(jì)得越短越好,公開(kāi)招標(biāo)的信息發(fā)布后,一個(gè)又一個(gè)方案被提交上來(lái),經(jīng)過(guò)初審后,擬從下面四個(gè)方案中選定一個(gè)再進(jìn)一步認(rèn)證,其中符合要求的方案是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(≠0)與軸交于A(-4,0),B(2,0),與軸交與點(diǎn)C(0,2).
(1)求拋物線的解析式;
(2)若點(diǎn)D為該拋物線上的一個(gè)動(dòng)點(diǎn),且在直線AC上方,當(dāng)以A,C,D為頂點(diǎn)的三角形面積最大時(shí),求點(diǎn)D的坐標(biāo)及此時(shí)三角形的面積;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com