如圖,拋物線關(guān)于直線對(duì)稱,與坐標(biāo)軸交于A、B、C三點(diǎn),且AB=4,點(diǎn)D在拋物線上,直線是一次函數(shù)的圖象,點(diǎn)O是坐標(biāo)原點(diǎn).
(1)求拋物線的解析式;
(2)若直線平分四邊形OBDC的面積,求k的值.
(3)把拋物線向左平移1個(gè)單位,再向下平移2個(gè)單位,所得拋物線與直線交于M、N兩點(diǎn),問在y軸正半軸上是否存在一定點(diǎn)P,使得不論k取何值,直線PM與PN總是關(guān)于y軸對(duì)稱?若存在,求出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.
(1)(2)(3)存在一點(diǎn)P(0,2),使直線PM與PN總是關(guān)于y軸對(duì)稱
【解析】解:(1)∵拋物線關(guān)于直線x=1對(duì)稱,AB=4,∴A(-1,0),B(3,0) 。
∴可設(shè)拋物線的解析式為。
∵點(diǎn)D在拋物線上,∴,解得。
∴拋物線的解析式為,即。
(2)由(1)知,令x=0,得C(0, ),
∴CD//AB。
令,得l與CD的交點(diǎn)F(),
令,得l與x軸的交點(diǎn)E(),
由S四邊形OEFC=S四邊形EBDF得:OE+CF=DF+BE,
即:,解得。
∴當(dāng)時(shí),直線平分四邊形OBDC的面積。
(3)∵,
∴把拋物線向左平移1個(gè)單位,再向下平移2個(gè)單位,所得拋物線的解析式為。
假設(shè)在y軸上存在一點(diǎn)P(0,t),t>0,使直線PM與PN關(guān)于y軸對(duì)稱,過點(diǎn)M、N分別向y軸作垂線MM1、NN1,垂足分別為M1、N1,
∵∠MPO=∠NPO,∴Rt△MPM1∽R(shí)t△NPN1。
∴ ①。
不妨設(shè)M(xM,yM)在點(diǎn)N(xN,yN)的左側(cè),
因?yàn)镻點(diǎn)在y軸正半軸上,則①式變?yōu)?img src="http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/2013080912513937816100/SYS201308091252389729982877_DA.files/image021.png">。
又∵,
∴ ②。
把代入中,整理得。
∴,代入②得,解得t=2,符合條件。
∴在y軸上存在一點(diǎn)P(0,2),使直線PM與PN總是關(guān)于y軸對(duì)稱。
(1)由已知求出點(diǎn)A,B的坐標(biāo),設(shè)出交點(diǎn)式,將點(diǎn)D 的坐標(biāo)代入即可求得拋物線的解析式。
(2)如圖,將S四邊形OEFC和S四邊形EBDF用k表示,根據(jù)S四邊形OEFC=S四邊形EBDF列方程求解即可。
(3)求出平移后的拋物線解析式,假設(shè)在y軸上存在一點(diǎn)P(0,t),t>0,使直線PM與PN關(guān)于y軸對(duì)稱,過點(diǎn)M、N分別向y軸作垂線MM1、NN1,垂足分別為M1、N1,不妨設(shè)M(xM,yM)在點(diǎn)N(xN,yN)的左側(cè),由Rt△MPM1∽R(shí)t△NPN1得,即。把代入中,整理得,根據(jù)一元二次方程根與系數(shù)的關(guān)系得代入,即可求得t=2。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(山東濰坊卷)數(shù)學(xué)(帶解析) 題型:解答題
如圖,拋物線關(guān)于直線對(duì)稱,與坐標(biāo)軸交于A、B、C三點(diǎn),且AB=4,點(diǎn)D在拋物線上,直線是一次函數(shù)的圖象,點(diǎn)O是坐標(biāo)原點(diǎn).
(1)求拋物線的解析式;
(2)若直線平分四邊形OBDC的面積,求k的值.
(3)把拋物線向左平移1個(gè)單位,再向下平移2個(gè)單位,所得拋物線與直線交于M、N兩點(diǎn),問在y軸正半軸上是否存在一定點(diǎn)P,使得不論k取何值,直線PM與PN總是關(guān)于y軸對(duì)稱?若存在,求出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013屆江蘇省無錫市北塘區(qū)九年級(jí)中考二模數(shù)學(xué)試卷(帶解析) 題型:解答題
如圖,拋物線與直線AB交于點(diǎn)A(-1,0),B(4,).點(diǎn)D是拋物線A,B兩點(diǎn)間部分上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A,B重合),直線CD與y軸平行,交直線AB于點(diǎn)C,連接AD,BD.
(1)求拋物線的解析式;
(2)設(shè)點(diǎn)D的橫坐標(biāo)為m,則用m的代數(shù)式表示線段DC的長;
(3)在(2)的條件下,若△ADB的面積為S,求S關(guān)于m的函數(shù)關(guān)系式,并求出當(dāng)S取最大值時(shí)的點(diǎn)C的坐標(biāo);
(4)當(dāng)點(diǎn)D為拋物線的頂點(diǎn)時(shí),若點(diǎn)P是拋物線上的動(dòng)點(diǎn),點(diǎn)Q是直線AB上的動(dòng)點(diǎn),判斷有幾個(gè)位置能使以點(diǎn)P,Q,C,D為頂點(diǎn)的四邊形為平行四邊形,直接寫出相應(yīng)的點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013年河南省鄭州市中考第一次質(zhì)量預(yù)測(cè)數(shù)學(xué)試卷(解析版) 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,拋物線關(guān)于直線對(duì)稱,與坐標(biāo)軸交于三點(diǎn),且,點(diǎn)在拋物線上,直線是一次函數(shù)的圖象,點(diǎn)是坐標(biāo)原點(diǎn).
(1)求拋物線的解析式;
(2)若直線平分四邊形的面積,求的值.
(3)把拋物線向左平移1個(gè)單位,再向下平移2個(gè)單位,所得拋物線與直線交于兩點(diǎn),問在軸正半軸上是否存在一定點(diǎn),使得不論取何值,直線與總是關(guān)于軸對(duì)稱?若存在,求出點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com