【題目】七年級(1)班的宣傳委員在辦黑板報時,采用了下面的圖案作為邊框,其中每個黑色六邊形與6個白色六邊形相鄰.若一段邊框上有45個黑色六邊形,則這段邊框共有白色六邊形( 。

A. 182 B. 180 C. 272 D. 270

【答案】A

【解析】

根據(jù)圖形分析可得:每增加一個黑色六邊形,則需增加4個白色六邊形,即可得若有n個黑色六邊形,則共有6+4(n-1)個白色六邊形,由此代入計算得出答案即可.

解:根據(jù)題意分析可得:每增加一個黑色六邊形,則需增加4個白色六邊形.若有n個黑色六邊形,則共有6+4(n-1)個白色六邊形,若邊框上有45個黑色六邊形,則這段邊框共有白色六邊形6+4×(45-1)=182個.

故選A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小凡把果樹林分為兩部分,左地塊用新技術(shù)管理,右地塊用老方法管理,管理成本相同,她在左、右兩地塊上各隨機選取20棵果樹,按產(chǎn)品分成甲、乙、丙、丁四個等級(數(shù)據(jù)分組包括左端點不包括右端點),并制作如下兩幅不完整的統(tǒng)計圖:
(1)補齊左地塊統(tǒng)計圖,求右地塊乙級所對應(yīng)的圓心角的度數(shù);
(2)比較兩地塊的產(chǎn)量水平,并說明試驗結(jié)果;
(3)在左地塊隨機抽查一棵果樹,求該果樹產(chǎn)量為乙級的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)已知a+b=5,ab=-2,求代數(shù)式(6a-3b-2ab)-(a-8b-ab)的值;

(2)已知2x-y-4=0,9x27y÷81y的值

【答案】(1)27;(2)81.

【解析】

(1)運用整式的加減運算順序先去括號,再合并同類項,根據(jù)乘法的分配律將5a+5b變形為5(a+b),最后代入求值即可;

(2)根據(jù)冪的乘方,可得同底數(shù)冪的乘法,根據(jù)同底數(shù)冪的乘法,可得答案.

(1)原式=6a-3b-2ab-a+8b+ab=5a+5b-ab=5(a+b)-ab,

當(dāng)a+b=5,ab=-2時,

原式=5×5-(-2)=27;

(2)9x27y÷81y=32x33y÷34y=32x-y

2x-y-4=0,2x-y=4,

故原式=34=81.

【點睛】

本題考查了冪的乘方,同底數(shù)冪的乘法,整式的混合運算和求值的應(yīng)用,用了整體代入思想.

型】解答
結(jié)束】
23

【題目】根據(jù)要求完成下列題目:

(1)圖中有_____塊小正方體;

(2)請在下面方格紙中分別畫出它的主視圖、左視圖和俯視圖;

(3)用小正方體搭一幾何體,使得它的俯視圖和左視圖與你在圖方格中所畫的圖一致,若這樣的幾何體最少要m個小正方體,最多要n個小正方體,則m+n的值為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在湖邊高出水面50 m的山頂A處看見一艘飛艇停留在湖面上空某處,觀察到飛艇底部標(biāo)志P處的仰角為45°,又觀其在湖中之像的俯角為60°.則飛艇離開湖面的高度( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線y= x+b與雙曲線y= 的一個交點為(2,5),直線與y軸交于點A.
(1)求m的值及點A的坐標(biāo);
(2)若點P在雙曲線y= 的圖象上,且SPOA=10,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,B,C兩點把線段AD分成2:5:3三部分,MAD的中點,BM=6cm,求CMAD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABGD中,AB=AD=6,梯形ABCD中,DE⊥DC交AB于E,DF平分∠EDC交BC于F,連結(jié)EF.
(1)證明:EF=CF;
(2)當(dāng) 時,求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】商場打折前,買1A商品和1B商品用了20元,買30A商品和40B商品用了680元.打折后,買100A商品100B商品用了1800元.請根據(jù)上述信息解決下列問題:

(1)打折前A、B兩種商品的單價分別是多少?

(2)請在(1)的基礎(chǔ)上提出一個能使題目剩余條件解決的問題,并加以解決.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,E、F分別是CD、AB延長線上的點,連結(jié)EF,分別交AD、BC于點G、H.若∠1=∠2,∠A=∠C,試說明AD//BCAB//CD.請完成下面的推理過程,填寫理由或數(shù)學(xué)式:

∵∠1=2,1=AGH(_________)

∴∠2=AGH(________)

AD//BC(________)

∴∠ADE=C(________)

∵∠A=C(已知

∴∠ADE=_______(等量代換)

AB//CD(_______)

查看答案和解析>>

同步練習(xí)冊答案