【題目】在正方形ABCD中,動點E,F分別從D,C兩點同時出發(fā),以相同的速度在直線DC,CB上移動.
(1)如圖1,當點E在邊DC上自D向C移動,同時點F在邊CB上自C向B移動時,連接AE和DF交于點P,請你寫出AE與DF的數(shù)量關(guān)系和位置關(guān)系,并說明理;
(2)如圖2,當E,F分別在邊CD,BC的延長線上移動時,連接AE,DF,(1)中的結(jié)論還成立嗎?(請你直接回答“是”或“否”,不需證明);連接AC,求△ACE為等腰三角形時CE:CD的值;
(3)如圖3,當E,F分別在直線DC,CB上移動時,連接AE和DF交于點P,由于點E,F的移動,使得點P也隨之運動,請你畫出點P運動路徑的草圖.若AD=2,試求出線段CP的最大值.
圖1 圖2 圖3
【答案】(1)AE=DF,AE⊥DF,理由見解析;(2)成立,CE:CD=或2;(3)
【解析】試題分析:(1)根據(jù)正方形的性質(zhì),由SAS先證得△ADE≌△DCF.由全等三角形的性質(zhì)得AE=DF,∠DAE=∠CDF,再由等角的余角相等可得AE⊥DF;
(2)有兩種情況:①當AC=CE時,設(shè)正方形ABCD的邊長為a,由勾股定理求出AC=CE=a即可;②當AE=AC時,設(shè)正方形的邊長為a,由勾股定理求出AC=AE=a,根據(jù)正方形的性質(zhì)知∠ADC=90°,然后根據(jù)等腰三角形的性質(zhì)得出DE=CD=a即可;
(3)由(1)(2)知:點P的路徑是一段以AD為直徑的圓,設(shè)AD的中點為Q,連接QC交弧于點P,此時CP的長度最大,再由勾股定理可得QC的長,再求CP即可.
試題解析:(1)AE=DF,AE⊥DF,
理由是:∵四邊形ABCD是正方形,
∴AD=DC,∠ADE=∠DCF=90°,
∵動點E,F分別從D,C兩點同時出發(fā),以相同的速度在直線DC,CB上移動,
∴DE=CF,
在△ADE和△DCF中
,
∴,
∴AE=DF,∠DAE=∠FDC,
∵∠ADE=90°,∴∠ADP+∠CDF=90°,
∴∠ADP+∠DAE=90°,
∴∠APD=180°-90°=90°,
∴AE⊥DF;
(2)(1)中的結(jié)論還成立,
有兩種情況:
①如圖1,當AC=CE時,
設(shè)正方形ABCD的邊長為a,由勾股定理得,
,
則;
②如圖2,當AE=AC時,
設(shè)正方形ABCD的邊長為a,由勾股定理得:
,
∵四邊形ABCD是正方形,
∴∠ADC=90°,即AD⊥CE,
∴DE=CD=a,
∴CE:CD=2a:a=2;
即CE:CD=或2;
(3)∵點P在運動中保持∠APD=90°,
∴點P的路徑是以AD為直徑的圓,
如圖3,設(shè)AD的中點為Q,連接CQ并延長交圓弧于點P,
此時CP的長度最大,
∵在Rt△QDC中,
∴,
即線段CP的最大值是.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校九年級的小紅同學(xué),在自己家附近進行測量一座樓房高度的實踐活動.如圖,她在山坡坡腳A出測得這座樓房的樓頂B點的仰角為60°,沿山坡往上走到C處再測得B點的仰角為45°.已知OA=200m,此山坡的坡比i=,且O、A、D在同一條直線上.
求:(1)樓房OB的高度;
(2)小紅在山坡上走過的距離AC.(計算過程和結(jié)果均不取近似值)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了了解初中各年級學(xué)生每天的平均睡眠時間(單位:h,精確到1 h),抽樣調(diào)查了部分學(xué)生,并用得到的數(shù)據(jù)繪制了下面兩幅不完整的統(tǒng)計圖.
請你根據(jù)圖中提供的信息,回答下列問題:
(1)求出扇形統(tǒng)計圖中百分數(shù)的值為_______,所抽查的學(xué)生人數(shù)為______;
(2)求出平均睡眠時間為8小時的人數(shù),并補全條形圖;
(3)求出這部分學(xué)生的平均睡眠時間的平均數(shù);
(4)如果該校共有學(xué)生1200名,請你估計睡眠不足(少于8小時)的學(xué)生數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩個邊長分別為a、b(>)的正方形紙片疊放在一起.(用含有a、b的代數(shù)式表示問題的結(jié)果)
⑴請用至少兩種方法求出圖中陰影部分的面積;
⑵ 由面積相等,你發(fā)現(xiàn)了怎樣的等量關(guān)系?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】端午節(jié)吃粽子是中華民族的傳統(tǒng)習(xí)慣.農(nóng)歷五月初五早晨,小王的媽媽用不透明袋子裝著一些粽子(粽子除食材不同外,其他一切相同),其中糯米粽兩個,還有一些薯粉粽,現(xiàn)小王從中任意拿出一個是糯米粽的概率為.
(1)求袋子中薯粉粽的個數(shù);
(2)小王第一次任意拿出一個粽子(不放回),第二次再拿出一個粽子,請你用樹形圖或列表法,求小王兩次拿到的都是薯粉粽的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】近年來,蕭山區(qū)大力發(fā)展旅游業(yè),跨湖橋遺址、湘湖二期三期、宋城千古情、河上民俗、大美進化……這些名詞,相信同學(xué)們都耳熟能詳了,因此近年來,我區(qū)的年游客接待量呈逐年穩(wěn)步上升,2015年接待1800萬人次,2015——2017年這三年累計接待游客高達5958萬人次.
(1)求蕭山區(qū)2015——2017年年游客接待量的年平均增長率.
(2)若繼續(xù)呈該趨勢增長,請預(yù)測2018年年游客接待量(近似到萬人次).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形和四邊形為正方形,點在線段上,點在同一直線上,連接,并延長交于點.
(1)求證:.
(2)若,,求線段的長.
(3)設(shè),,當點H是線段GC的中點時,則與滿足什么樣的關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“愛我中華”中學(xué)生演講比賽中,五位評委分別給甲、乙兩位選手的評分如下:甲:8,7,9,8,8;乙:7,9,6,9,9,則下列說法中錯誤的是( )
A. 甲得分的方差比乙得分的方差小B. 甲得分的眾數(shù)是8,乙得分的眾數(shù)是9
C. 甲、乙得分的平均數(shù)都是8D. 甲得分的中位數(shù)是9,乙得分的中位數(shù)是6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一直角坐標系中,拋物線y=ax2﹣2x﹣3與拋物線y=x2+mx+n關(guān)于y軸對稱,C2與x軸交于A、B兩點,其中點A在點B的左側(cè).
(1)求拋物線C1,C2的函數(shù)表達式;
(2)求A、B兩點的坐標;
(3)在拋物線C1上是否存在一點P,在拋物線C2上是否存在一點Q,使得以AB為邊,且以A、B、P、Q四點為頂點的四邊形是平行四邊形?若存在,求出P、Q兩點的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com