【答案】
分析:(1)在二次函數(shù)的解析式y(tǒng)=2x
2-2中,令y=0,求出x=±1,得到AB=2,令x=0時(shí),求出y=-2,得到OC=2,然后根據(jù)三角形的面積公式即可求出△ABC的面積;
(2)先將y=6代入y=2x
2-2,求出x=±2,得到點(diǎn)M與點(diǎn)N的坐標(biāo),則MN=4,再由平行四邊形的面積公式得到MN邊上的高為2,則P點(diǎn)縱坐標(biāo)為8或4.分兩種情況討論:①當(dāng)P點(diǎn)縱坐標(biāo)為8時(shí),將y=8代入y=2x
2-2,求出x的值,得到點(diǎn)P的坐標(biāo);②當(dāng)P點(diǎn)縱坐標(biāo)為4時(shí),將y=4代入y=2x
2-2,求出x的值,得到點(diǎn)P的坐標(biāo);
(3)由于∠QDB=∠BOC=90°,所以以Q,D,B為頂點(diǎn)的三角形和以B,C,O為頂點(diǎn)的三角形相似時(shí),分兩種情況討論:①OB與BD邊是對(duì)應(yīng)邊,②OB與QD邊是對(duì)應(yīng)邊兩種情況,根據(jù)相似三角形對(duì)應(yīng)邊成比例列式計(jì)算求出QD的長(zhǎng)度即可.
解答:解:(1)∵y=2x
2-2,
∴當(dāng)y=0時(shí),2x
2-2=0,x=±1,
∴點(diǎn)A的坐標(biāo)為(-1,0),點(diǎn)B的坐標(biāo)為(1,0),AB=2,
又當(dāng)x=0時(shí),y=-2,
∴點(diǎn)C的坐標(biāo)為(0,-2),OC=2,
∴S
△ABC=
AB•OC=
×2×2=2;
(2)將y=6代入y=2x
2-2,
得2x
2-2=6,x=±2,
∴點(diǎn)M的坐標(biāo)為(-2,6),點(diǎn)N的坐標(biāo)為(2,6),MN=4.
∵平行四邊形的面積為8,
∴MN邊上的高為:8÷4=2,
∴P點(diǎn)縱坐標(biāo)為6±2.
①當(dāng)P點(diǎn)縱坐標(biāo)為6+2=8時(shí),2x
2-2=8,x=±
,
∴點(diǎn)P的坐標(biāo)為(
,8),點(diǎn)N的坐標(biāo)為(-
,8);
②當(dāng)P點(diǎn)縱坐標(biāo)為6-2=4時(shí),2x
2-2=4,x=±
,
∴點(diǎn)P的坐標(biāo)為(
,4),點(diǎn)N的坐標(biāo)為(-
,4);
(3)∵點(diǎn)B的坐標(biāo)為(1,0),點(diǎn)C的坐標(biāo)為(0,-2),
∴OB=1,OC=2.
∵∠QDB=∠BOC=90°,
∴以Q,D,B為頂點(diǎn)的三角形和以B,C,O為頂點(diǎn)的三角形相似時(shí),分兩種情況:
①OB與BD邊是對(duì)應(yīng)邊時(shí),△OBC∽△DBQ,
則
=
,即
=
,
解得DQ=2(m-1)=2m-2,
②OB與QD邊是對(duì)應(yīng)邊時(shí),△OBC∽△DQB,
則
=
,即
=
,
解得DQ=
.
綜上所述,線段QD的長(zhǎng)為2m-2或
.
點(diǎn)評(píng):本題是對(duì)二次函數(shù)的綜合考查,主要利用了二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,三角形、平行四邊形的面積,相似三角形對(duì)應(yīng)邊成比例的性質(zhì),綜合性較強(qiáng),但難度不大,注意要分情況討論求解.