【題目】如圖,OM是∠AOC的平分線,ON是∠BOC的平分線.
(1)如圖1,當∠AOB是直角,∠BOC=60°時,∠MON的度數(shù)是多少?

(2)如圖2,當∠AOB=α,∠BOC=60°時,猜想∠MON與α的數(shù)量關系;

(3)如圖3,當∠AOB=α,∠BOC=β時,猜想∠MON與α、β有數(shù)量關系嗎?如果有,指出結論并說明理由.

【答案】
(1)解:如圖1,∵∠AOB=90°,∠BOC=60°,
∴∠AOC=90°+60°=150°,
∵OM平分∠AOC,ON平分∠BOC,
∴∠MOC= ∠AOC=75°,∠NOC= ∠BOC=30°
∴∠MON=∠MOC﹣∠NOC=45°
(2)解:如圖2,∠MON= α,
理由是:∵∠AOB=α,∠BOC=60°,
∴∠AOC=α+60°,
∵OM平分∠AOC,ON平分∠BOC,
∴∠MOC= ∠AOC= α+30°,∠NOC= ∠BOC=30°
∴∠MON=∠MOC﹣∠NOC=( α+30°)﹣30°= α
(3)解:如圖3,∠MON= α,與β的大小無關.
理由:∵∠AOB=α,∠BOC=β,
∴∠AOC=α+β.
∵OM是∠AOC的平分線,ON是∠BOC的平分線,
∴∠MOC= ∠AOC= (α+β),
∠NOC= ∠BOC= β,
∴∠AON=∠AOC﹣∠NOC=α+β﹣ β=α+ β.
∴∠MON=∠MOC﹣∠NOC
= (α+β)﹣ β= α
即∠MON= α
【解析】(1)根據已知條件易求出∠AOC的度數(shù),再根據角平分線的定義分別求出∠MOC和∠NOC的度數(shù),然后根據∠MON=∠MOC﹣∠NOC求出結果。
(2)解答過程同(1)類似。即可得出結論。
(3)解答過程同(1)類似。即可得出結論。

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如果“盈利5%”記作+5%,那么﹣3%表示(  )
A.虧損3%
B.虧損8%
C.盈利2%
D.少賺3%

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】化簡:(2x-3)2-(2x-3)(2x+3).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果∠α和∠β互補,且∠α>∠β,則下列表示∠β的余角的式子中:①90°﹣∠β;②∠α﹣90°;③ (∠α+∠β);④ (∠α﹣∠β).正確的有( )
A.4個
B.3個
C.2個
D.1個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們將在直角坐標系中圓心坐標和半徑均為整數(shù)的圓稱為“整圓”.如圖,直線l:與x軸、y軸分別交于A、B,∠OAB=30°,點P在x軸上,⊙P與l相切,當P在線段OA上運動時,使得⊙P成為整圓的點P個數(shù)是(

A.6 B.8 C.10 D.12

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖

(1)若點P為AB的中點,直接寫出點P對應的數(shù);
(2)數(shù)軸的原點右側是否存在點P,使點P到點A、點B的距離之和為8?若存在,請求出x的值;若不存在,說明理由;
(3)現(xiàn)在點A、點B分別以每秒2個單位長度和每秒0.5個單位長度的速度同時向右運動,同時點P以每秒6個單位長度的速度從表示數(shù)1的點向左運動.當點A與點B之間的距離為3個單位長度時,求點P所對應的數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】α是銳角,若sinαcos15°,則α_____°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,D為BC邊上一點,∠B=30°,∠DAB=45°.
(1)求∠DAC的度數(shù);
(2)求證:DC=AB.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:數(shù)學活動課上,樂老師給出如下定義:有一組對邊相等而另一組對邊不相等的凸四邊形叫做對等四邊形.

解:

(1)如圖1,已知A、B、C在格點(小正方形的頂點)上,請在方格圖中畫出以格點為頂點,AB、BC為邊的兩個對等四邊形ABCD;

(2)如圖2,在圓內接四邊形ABCD中,AB是⊙O的直徑,AC=BD.求證:四邊形ABCD是對等四邊形;

(3)如圖3,在Rt△PBC中,∠PCB=90°,BC=11,tan∠PBC=,點A在BP邊上,且AB=13.用圓規(guī)在PC上找到符合條件的點D,使四邊形ABCD為對等四邊形,并求出CD的長.

查看答案和解析>>

同步練習冊答案