【題目】如圖,在ABC中,AB=AC,AC的垂直平分線分別交BC、AC于點(diǎn)D、E.

(1)若AC=12,BC=15,求ABD的周長;

(2)若∠B=20°,求∠BAD的度數(shù).

【答案】(1)27;(2)120°.

【解析】

試題(1)根據(jù)線段垂直平分線性質(zhì)求出AD=DC,求出ABD周長=AB+BC即可;

(2)根據(jù)等腰三角形性質(zhì)求出∠C,DAC,根據(jù)三角形內(nèi)角和定理求出∠BAC,即可求出答案.

試題解析:(1)AC的垂直平分線分別交BC、AC于點(diǎn)D、E,

AD=DC,

AB=AC=12,

∴△ABD的周長為AB+AD+BD=AB+DC+BD=AB+BC=12+15=27;

(2)AB=AC,B=20°,

∴∠C=B=20°,

∴∠BAC=180°-20°-20°=140°,

AD=DC,

∴∠DAC=C=20°,

∴∠BAD=BAC-DAC=140°-20°=120°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC△DEC中,已知AB=DE,還需添加兩個(gè)條件才能使△ABC≌△DEC,不能添加的一組條件是(  。

A. BC=EC,∠B=∠E B. BC=DC,∠A=∠D

C. BC=EC,AC=DC D. AC=DC,∠A=∠D

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),直線l與拋物線y=mx2+nx相交于A(1,3 ),B(4,0)兩點(diǎn).
(1)求出拋物線的解析式;
(2)在坐標(biāo)軸上是否存在點(diǎn)D,使得△ABD是以線段AB為斜邊的直角三角形?若存在,求出點(diǎn)D的坐標(biāo);若不存在,說明理由;
(3)點(diǎn)P是線段AB上一動(dòng)點(diǎn),(點(diǎn)P不與點(diǎn)A、B重合),過點(diǎn)P作PM∥OA,交第一象限內(nèi)的拋物線于點(diǎn)M,過點(diǎn)M作MC⊥x軸于點(diǎn)C,交AB于點(diǎn)N,若△BCN、△PMN的面積SBCN、SPMN滿足SBCN=2SPMN , 求出 的值,并求出此時(shí)點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P、Q分別是邊長為4cm的等邊△ABCAB、BC上的動(dòng)點(diǎn),點(diǎn)P從頂點(diǎn)A,點(diǎn)Q從頂點(diǎn)B同時(shí)出發(fā),且速度都為1cm/s,連接AQ、CP交于點(diǎn)M,下面四個(gè)結(jié)論:BP=CM;②△ABQ≌△CAP;③∠CMQ的度數(shù)不變,始終等于60°;④當(dāng)?shù)?/span>秒或第秒時(shí),△PBQ為直角三角形,正確的有幾個(gè) ( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線L:y=ax2+bx+c與x軸交于A、B(3,0)兩點(diǎn)(A在B的左側(cè)),與y軸交于點(diǎn)C(0,3),已知對(duì)稱軸x=1.

(1)求拋物線L的解析式;
(2)將拋物線L向下平移h個(gè)單位長度,使平移后所得拋物線的頂點(diǎn)落在△OBC內(nèi)(包括△OBC的邊界),求h的取值范圍;
(3)設(shè)點(diǎn)P是拋物線L上任一點(diǎn),點(diǎn)Q在直線l:x=﹣3上,△PBQ能否成為以點(diǎn)P為直角頂點(diǎn)的等腰直角三角形?若能,求出符合條件的點(diǎn)P的坐標(biāo);若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠C=Rt,AB=5cm,BC=3cm,若動(dòng)點(diǎn)P從點(diǎn)C開始,按CABC的路徑運(yùn)動(dòng),且速度為每秒1cm,設(shè)出發(fā)的時(shí)間為t秒.

1)出發(fā)2秒后,求△ABP的周長.

2)問t滿足什么條件時(shí),△BCP為直角三角形?

3)另有一點(diǎn)Q,從點(diǎn)C開始,按CBAC的路徑運(yùn)動(dòng),且速度為每秒2cm,若PQ兩點(diǎn)同時(shí)出發(fā),當(dāng)PQ中有一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也停止運(yùn)動(dòng).當(dāng)t為何值時(shí),直線PQ把△ABC的周長分成相等的兩部分?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為更新果樹品種,某果園計(jì)劃新購進(jìn)A、B兩個(gè)品種的果樹苗栽植培育,若計(jì)劃購進(jìn)這兩種果樹苗共45棵,其中A種苗的單價(jià)為7元/棵,購買B種苗所需費(fèi)用y(元)與購買數(shù)量x(棵)之間存在如圖所示的函數(shù)關(guān)系.

(1)求y與x的函數(shù)關(guān)系式;
(2)若在購買計(jì)劃中,B種苗的數(shù)量不超過35棵,但不少于A種苗的數(shù)量,請(qǐng)?jiān)O(shè)計(jì)購買方案,使總費(fèi)用最低,并求出最低費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的直徑為AB,點(diǎn)C在圓周上(異于A,B),AD⊥CD.

(1)若BC=3,AB=5,求AC的值;
(2)若AC是∠DAB的平分線,求證:直線CD是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,過反比例函數(shù)y= (x>0)的圖象上一點(diǎn)A作AB⊥x軸于點(diǎn)B,連接AO,若SAOB=2,則k的值為( 。

A.2
B.3
C.4
D.5

查看答案和解析>>

同步練習(xí)冊(cè)答案