【題目】如圖,OB,AB分別表示甲乙兩名同學(xué)運動的一次函數(shù)圖象,圖中st分別表示運動路程和時間,已知甲的速度比乙快,下列說法:①射線AB表示甲的路程與時間的函數(shù)關(guān)系;②甲的速度比乙快1.5/ 秒;③甲比乙先跑12米;④8秒鐘后,甲超過了乙,其中正確的有_____________.(填寫你認為所有正確的答案序號)

【答案】②④

【解析】

觀察圖象得到射線OB所表示的速度為64÷8=8/秒,射線AB所表示的速度為(64-12)÷8=6.5/秒,則射線AB表示乙的運動路程與時間的函數(shù)關(guān)系;于是可得甲出發(fā)時,乙在甲的前面12米處;并且甲走了8秒追上了乙,據(jù)此進行解答即可得答案.

∵射線OB所表示的速度為64÷8=8/秒,

射線AB所表示的速度為(64-12)÷8=6.5/秒,

而甲的速度比乙快,

∴射線AB表示乙的運動路程與時間的函數(shù)關(guān)系,所以①錯誤;

8-6.5=1.5/秒,即甲的速度比乙快1.5/ 秒,故②正確;

∵乙8秒走了64-12=52米,甲8秒走了64米,而他們8秒時相遇,

∴甲出發(fā)時,乙在甲前面12米,故③錯誤;

∵甲乙8秒時相遇,而甲的速度比乙快,

8秒后,甲超過了乙,故④正確,

故答案為:②④.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某廠計劃每天生產(chǎn)零件個,但實際每天生產(chǎn)量與計劃量相比有出入. 下表是某周的生產(chǎn)情況(超產(chǎn)數(shù)量記為正、減產(chǎn)數(shù)量記為負):

星期

增減

(1)由表可知該廠星期四生產(chǎn)零件 個,這周實際生產(chǎn)零件 .(用含的代數(shù)式表示)

(2) 產(chǎn)量最高日比最低日多生產(chǎn)零件 .

(3) 若該周廠計劃每天生產(chǎn)零件數(shù)是,每個零件應(yīng)支付工資元,且每天超計劃數(shù)的零件每個另獎元,那這周實際應(yīng)支付工資多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖①、②分別是某種型號跑步機的實物圖與示意圖,已知踏板CD長為1.6m,CD與地面DE的夾角∠CDE為12°,支架AC長為0.8m,∠ACD為80°,求跑步機手柄的一端A的高度h(精確到0.1m). (參考數(shù)據(jù):sin12°=cos78°≈0.21,sin68°=cos22°≈0.93,tan68°≈2.48)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知直線的圖象與x軸、y軸交于A,B兩點,直線經(jīng)過原點,與線段AB交于點C,把的面積分為2:1的兩部分,求直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式組 ,并在數(shù)軸上表示解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,O為平面直角坐標(biāo)系的原點,半徑為1的⊙B經(jīng)過點O,且與x,y軸分交于點A,C,點A的坐標(biāo)為(﹣ ,0),AC的延長線與⊙B的切線OD交于點D.

(1)求OC的長和∠CAO的度數(shù);
(2)求過D點的反比例函數(shù)的表達式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C為線段AB的中點,點D在線段CB上.

(1)圖中共有 條線段.

(2)圖中AD=AC+CD,BC=AB﹣AC,類似地,請你再寫出兩個有關(guān)線段的和與差的關(guān)系式:

.

(3)若AB=8,DB=1.5,求線段CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于A、B兩點,其中A點坐標(biāo)為(﹣1,0),點C(0,5),另拋物線經(jīng)過點(1,8),M為它的頂點.

(1)求拋物線的解析式;
(2)求△MCB的面積SMCB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在Rt△OAB中,∠AOB=90°,已知AB= ,AO:BO=1:3,將△OAB繞點O按順時針方向旋轉(zhuǎn)90°得到△ODC,如圖1建立平面直角坐標(biāo)系.

(1)求A,B,C三點坐標(biāo);
(2)若拋物線y=ax2+bx+c(a≠0)經(jīng)過A,B,C三點(如圖2),點P是拋物線的頂點,試判定△PCD的形狀,并說明理由:

(3)在(2)的拋物線上,且在第一象限中,是否存在點Q,使SQCD=SOCD?若存在,請求點Q的橫坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案