如圖,邊長為4的正方形OABC的頂點O為坐標原點,點Ax軸的正半軸上,點Cy

的正半軸上.動點D在線段BC上移動(不與B、C重合),連接OD,過點DDEOD

交邊AB于點E,連接OE

(1)當CD=1時,求點E的坐標.

(2)如果設CD=t,梯形COEB的面積為S,那么是否存在S的最大值?若存在,請求出這個

最大值及此時t的值;若不存在,請說明理由.

(1)正方形OABC中,因為EDOD,即∠ODE =90°

所以∠CDO+∠EDB=90°,即∠COD=90°-∠CDO,而 ∠EDB=90°-∠CDO,

所以∠COD =EDB    又因為∠OCD=∠DBE=90°

所以△CDO∽△BED,

所以,即,得BE=,

則:

因此點E的坐標為(4,).       

(2) 存在S的最大值.

由△CDO∽△BED,

所以,即,BE=tt2,

×4×(4+tt2)

故當t=2時,S有最大值10.         

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,邊長為
π2
的正△ABC,點A與原點O重合,若將該正三角形沿數(shù)軸正方向翻滾一周,點A恰好與數(shù)軸上的點A′重合,則點A′對應的實數(shù)是
 

精英家教網

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,邊長為6的正方OABC的頂點O在坐標原點處,點A、C分別在x軸、y軸的正半軸上,點E是OA邊上的點(不與點A重合),EF⊥CE,且與正方形外角平分線AC交于點P.
(1)當點E坐標為(3,0)時,證明CE=EP;
(2)如果將上述條件“點E坐標為(3,0)”改為“點E坐標為(t,0)”,結論CE=EP是否仍然成立,請說明理由;
(3)在y軸上是否存在點M,使得四邊形BMEP是平行四邊形?若存在,用t表示點M的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,邊長為6的正方OABC的頂點O在坐標原點處,點A、C分別在x軸、y軸的正半軸上,點E是OA邊上的點(不與點A重合),EF⊥CE,且與正方形外角平分線AC交于點P.
(1)當點E坐標為(3,0)時,證明CE=EP;
(2)如果將上述條件“點E坐標為(3,0)”改為“點E坐標為(t,0)”,結論CE=EP是否仍然成立,請說明理由;
(3)在y軸上是否存在點M,使得四邊形BMEP是平行四邊形?若存在,用t表示點M的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖將邊長為1的正方形OAPB沿軸正方向連續(xù)翻轉2006次,點P依次落在點,,,……的位置,則的橫坐標=_________.

查看答案和解析>>

科目:初中數(shù)學 來源:2012-2013學年新人教版九年級(上)期中數(shù)學試卷(7)(解析版) 題型:解答題

如圖,邊長為6的正方OABC的頂點O在坐標原點處,點A、C分別在x軸、y軸的正半軸上,點E是OA邊上的點(不與點A重合),EF⊥CE,且與正方形外角平分線AC交于點P.
(1)當點E坐標為(3,0)時,證明CE=EP;
(2)如果將上述條件“點E坐標為(3,0)”改為“點E坐標為(t,0)”,結論CE=EP是否仍然成立,請說明理由;
(3)在y軸上是否存在點M,使得四邊形BMEP是平行四邊形?若存在,用t表示點M的坐標;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案