【題目】在一副撲克牌中取牌面花色分別為黑桃、紅心、方塊各一張,洗勻后正面朝下放在桌面上.
(1)從這三張牌中隨機抽取一張牌,抽到牌面花色為紅心的概率是多少?
(2)小王和小李玩摸牌游戲,游戲規(guī)則如下:先由小王隨機抽出一張牌,記下牌面花色后放回,洗勻后正面朝下,再由小李隨機抽出一張牌,記下牌面花色.當兩張牌的花色相同時,小王贏;當兩張牌面的花色不相同時,小李贏.請你利用樹狀圖或列表法分析該游戲規(guī)則對雙方是否公平?并說明理由.

【答案】
(1)解:P(抽到牌面花色為紅心)=
(2)解:游戲規(guī)則對雙方不公平.

理由如下:

小李

小王

紅心

黑桃

方塊

紅心

紅心、紅心

紅心、黑桃

紅心、方塊

黑桃

黑桃、紅心

黑桃、黑桃

黑桃、方塊

方塊

方塊、紅心

方塊、黑桃

方塊、方塊

由樹狀圖或表格知:所有可能出現(xiàn)的結(jié)果共有9種.

P(抽到牌面花色相同)= ;

P(抽到牌面花色不相同)=

,

∴此游戲不公平,小李贏的可能性大.


【解析】(1)利用概率公式易得結(jié)果;(2)事件分為兩個步驟,樹狀圖可分為兩層,機會均等的結(jié)果為9種,易得牌面花色相同的結(jié)果與花色不同的結(jié)果不等,概率不等,對小李有利.
【考點精析】關于本題考查的列表法與樹狀圖法和概率公式,需要了解當一次試驗要設計三個或更多的因素時,用列表法就不方便了,為了不重不漏地列出所有可能的結(jié)果,通常采用樹狀圖法求概率;一般地,如果在一次試驗中,有n種可能的結(jié)果,并且它們發(fā)生的可能性都相等,事件A包含其中的m中結(jié)果,那么事件A發(fā)生的概率為P(A)=m/n才能得出正確答案.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】完成下列證明:如圖,已知,

求證:

證明:,(已知)

_____________________

(等量代換)

_______________________

__________________________

(已知)

_______________(等量代換)

_____________________________

____________________).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校學生在電腦培訓前后各參加了一次水平相同的考試,考分都以同一標準劃分成不合格、合格、優(yōu)秀三個等級.為了了解電腦培訓的效果,隨機抽取其中32名學生兩次考試考分等級制成統(tǒng)計圖(如圖),試回答下列問題:

(1)32名學生經(jīng)過培訓,考分等級不合格的百分比由________下降到________;

(2)估計該校640名學生,培訓后考分等級為合格優(yōu)秀的學生共有多少名.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),分別以直角△ABC的三邊為直徑向外作三個半圓,其面積分別用S1、S2、S3表示,則不難說明S1=S2+S3。(1)如圖(2),分別以直角△ABC三邊為一邊向外作三個正方形,其面積分別用S1、S2、S3表示,那么S1、S2、S3之間有什么關系?(2)如圖(3),若分別以直角△ABC三邊為一邊向外作三個正三角形,其面積分別用S1、S2、S3表示,試確定S1、S2、S3之間的關系并加以說明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了增強抗旱能力,保證今年夏糧豐收,某村新修建了一個蓄水池,這個蓄水池安裝了兩個進水管和一個出水管(兩個進水管的進水速度相同)一個進水管和一個出水管的進出水速度如圖(1)所示,某天0點到6(至少打開一個水管),該蓄水池的蓄水量如圖(2)所示,并給出以下三個論斷:0點到1點不進水,只出水;1點到4點不進水,不出水;4點到6點只進水,不出水.則一定正確的論斷是(  )

A.①③B.②③C.D.①②

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】10如圖,已知ABC為等邊三角形,點D、E分別在BC、AC邊上,且AE=CD,AD與BE相交于點F。

1求證:ABE≌△CAD;2BFD的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某超市推出如下購物優(yōu)惠方案:一次性購物在80不含80以內(nèi)時,不享受優(yōu)惠;一次性購物在8080以上,300不含300以內(nèi)時,一律享受九折的優(yōu)惠;一次性購物在300300以上時,一律享受八折的優(yōu)惠,某顧客在本超市兩次購物分別付款65元、252元,如果他改成在本超市一次性購買與上兩次完全相同的商品,則應付款  

A. 316 B. 304元或316 C. 276 D. 276元或304

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,矩形OABC的邊OA,OC分別在x軸、y軸上,點B坐標為(4,t)(t>0),二次函數(shù)y=x2+bx(b<0)的圖象經(jīng)過點B,頂點為點D.

(1)當t=12時,頂點D到x軸的距離等于
(2)點E是二次函數(shù)y=x2+bx(b<0)的圖象與x軸的一個公共點(點E與點O不重合),求OEEA的最大值及取得最大值時的二次函數(shù)表達式;
(3)矩形OABC的對角線OB、AC交于點F,直線l平行于x軸,交二次函數(shù)y=x2+bx(b<0)的圖象于點M、N,連接DM、DN,當△DMN≌△FOC時,求t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,,,以B點為直角頂點在第二象限作等腰直角

C點的坐標;

在坐標平面內(nèi)是否存在一點P,使全等?若存在,直接寫出P點坐標,若不存在,請說明理由;

如圖2,點Ey軸正半軸上一動點,以E為直角頂點作等腰直角,過M軸于N,直接寫出的值為

查看答案和解析>>

同步練習冊答案