【題目】全等三角形又叫做合同三角形,平面內的合同三角形分為真正合同三角形與鏡面合同三角形,假設△ABC△A1B1C1是合同三角形,點A與點A1對應,點B與點B1對應,點C與點C1對應,當沿周界A→B→C→A,及A1→B1→C1→A1環(huán)繞時,若運動方向相同,則稱它們是真正合同三角形(如圖1),若運動方向相反,則稱它們是鏡面合同三角形(如圖2),兩個真正合同三角形都可以在平面內通過平移或旋轉使它們重合,兩個鏡面合同三角形要重合,則必須將其中一個翻轉180°.下列各組合同三角形中,是鏡面合同三角形的是(

A.B.C.D.

【答案】C

【解析】

認真閱讀題目,理解真正合同三角形和鏡面合同三角形的定義,然后根據(jù)各自的定義或特點進行解答.

解:由題意知真正合同三角形和鏡面合同三角形的特點,可判斷要使C組的兩個三角形重合必須將其中的一個翻轉180°;

而其它組的全等三角形可以在平面內通過平移或旋轉使它們重合.

故選:C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某商場柜臺銷售每臺進價分別為160元、120元的、兩種型號的電器,下表是近兩周的銷售情況:

銷售時段

銷售數(shù)量

銷售收入

種型號

種型號

第一周

3

4

1200

第二周

5

6

1900

(進價、售價均保持不變,利潤=銷售收入—進貨成本)

1)求兩種型號的電器的銷售單價;

2)若商場準備用不多于7500元的金額再采購這兩種型號的電器共50臺,求種型號的電器最多能采購多少臺?

3)在(2)中商場用不多于7500元采購這兩種型號的電器共50臺的條件下,商場銷售完這50臺電器能否實現(xiàn)利潤超過1850元的目標?若能,請給出相應的采購方案;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖在長方形中,,,點點出發(fā),沿路線運動,到點停止;點出發(fā),沿運動,到點停止若點、點同時出發(fā),點的速度為每秒,點的速度為每秒,用(秒)表示運動時間.

1)當__________秒時,點和點相遇.

2)連接,當平分長方形的面積時,求此時的值

3)若點、點運動到6秒時同時改變速度,點的速度變?yōu)槊棵?/span>,點的速度變?yōu)槊棵?/span>,求在整個運動過程中,點在運動路線上相距路程為時運動時間的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】足球運動員將足球沿與地面成一定角度的方向踢出,足球飛行的路線是一條拋物線,不考慮空氣阻力,足球距離地面的高度(單位:)與足球被踢出后經過的時間(單位:)之間的關系如下表:

0

1

2

3

4

5

6

7

0

8

14

18

20

20

18

14

下列結論:足球距離地面的最大高度為;足球飛行路線的對稱軸是直線;足球被踢出時落地;足球被踢出時,距離地面的高度是.

其中正確結論的個數(shù)是(

A.1 B.2 C.3 D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,AD∥BC,∠A=90°,CE⊥BD于E,AB=EC.

(1)求證:△ABD≌△ECB;

(2)若∠EDC=65°,求∠ECB的度數(shù);

(3)若AD=3,AB=4,求DC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AB的垂直平分線分別交AB、BC于點D、E,AC的垂直平分線分別交AC、BC于點F、G,若∠BAC=100°,則∠EAG=_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在ABC中,AB=ACAB的垂直平分線DE分別交AB、ACDE

1)若AC=12,BC=10,求EBC的周長;

2)若∠A=40°,求∠EBC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“校園手機”現(xiàn)象越來越受到社會的關注.“寒假”期間,某校小記者隨機調查了某地區(qū)若干名學生和家長對中學生帶手機現(xiàn)象的看法,統(tǒng)計整理并制作了如下的統(tǒng)計圖:

(1)求這次調查的家長人數(shù),并補全圖1;

(2)求圖2中表示家長“贊成”的圓心角的度數(shù);

(3)已知某地區(qū)共6500名家長,估計其中反對中學生帶手機的大約有多少名家長?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,射線OA是第一象限的角平分線,點C11,5),E,F分別是射線OAx軸正半軸的動點,那么FE+FC的最小值是_____

查看答案和解析>>

同步練習冊答案