【題目】魏晉時(shí)期的數(shù)學(xué)家劉徽首創(chuàng)割圓術(shù).為計(jì)算圓周率建立了嚴(yán)密的理論和完善的算法.作圓內(nèi)接正多邊形,當(dāng)正多邊形的邊數(shù)不斷增加時(shí),其周長就無限接近圓的周長,進(jìn)而可用來求得較為精確的圓周率.祖沖之在劉徽的基礎(chǔ)上繼續(xù)努力,當(dāng)正多邊形的邊數(shù)增加24576時(shí),得到了精確到小數(shù)點(diǎn)后七位的圓周率,這一成就在當(dāng)時(shí)是領(lǐng)先其他國家一千多年,如圖,依據(jù)割圓術(shù),由圓內(nèi)接正六邊形算得的圓周率的近似值是( )

A. 0.5B. 1C. 3D. π

【答案】C

【解析】

連接OC、OD,根據(jù)正六邊形的性質(zhì)得到∠COD60°,得到△COD是等邊三角形,得到OCCD,根據(jù)題意計(jì)算即可.

解:連接OC、OD

六邊形ABCDEF是正六邊形,

∴∠COD60°,又OCOD,

∴△COD是等邊三角形,

∴OCCD,

正六邊形的周長:圓的直徑=6CD2CD3.

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】附加題:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2

的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2﹣5ax+c與坐標(biāo)軸分別交于點(diǎn)A,C,E三點(diǎn),其中A(﹣3,0),C(0,4),點(diǎn)Bx軸上,AC=BC,過點(diǎn)BBDx軸交拋物線于點(diǎn)D,點(diǎn)M,N分別是線段CO,BC上的動點(diǎn),且CM=BN,連接MN,AM,AN.

(1)求拋物線的解析式及點(diǎn)D的坐標(biāo);

(2)當(dāng)CMN是直角三角形時(shí),求點(diǎn)M的坐標(biāo);

(3)試求出AM+AN的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題背景:我們學(xué)習(xí)等邊三角形時(shí)得到直角三角形的一個(gè)性質(zhì):在直角三角形中,如果一個(gè)銳角等于30°,那么它所對的直角邊等于斜邊的一半.即:如圖1,在RtABC中,∠ACB=90°,ABC=30°,則:AC=AB.

探究結(jié)論:小明同學(xué)對以上結(jié)論作了進(jìn)一步研究.

(1)如圖1,連接AB邊上中線CE,由于CE=AB,易得結(jié)論:①△ACE為等邊三角形;②BECE之間的數(shù)量關(guān)系為  

(2)如圖2,點(diǎn)D是邊CB上任意一點(diǎn),連接AD,作等邊ADE,且點(diǎn)E在∠ACB的內(nèi)部,連接BE.試探究線段BEDE之間的數(shù)量關(guān)系,寫出你的猜想并加以證明.

(3)當(dāng)點(diǎn)D為邊CB延長線上任意一點(diǎn)時(shí),在(2)條件的基礎(chǔ)上,線段BEDE之間存在怎樣的數(shù)量關(guān)系?請直接寫出你的結(jié)論  

拓展應(yīng)用:如圖3,在平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(﹣,1),點(diǎn)Bx軸正半軸上的一動點(diǎn),以AB為邊作等邊ABC,當(dāng)C點(diǎn)在第一象限內(nèi),且B(2,0)時(shí),求C點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2019年春節(jié),小娜家購買了4個(gè)燈籠,燈籠上分別寫有“歡”、“度”、“春”、“節(jié)”(外觀完全一樣).

1)小娜抽到“2019年”是  事件,“歡”字被抽中的是  事件;(填“不可能”或“必然”或“隨機(jī)”).小娜從四個(gè)燈籠中任取一個(gè),取到“春”的概率是  

2)小娜從四個(gè)燈籠中先后取出兩個(gè)燈籠,請用列表法或畫樹狀圖法求小娜恰好取到“春”、“節(jié)”兩個(gè)燈籠的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在ABCD中,DHAB于點(diǎn)H,CD的垂直平分線交CD于點(diǎn)E,交AB于點(diǎn)F,AB=6,DH=4,BF:FA=1:5.

(1)如圖2,作FGAD于點(diǎn)G,交DH于點(diǎn)M,將DGM沿DC方向平移,得到CG′M′,連接M′B.

①求四邊形BHMM′的面積;

②直線EF上有一動點(diǎn)N,求DNM周長的最小值.

(2)如圖3,延長CBEF于點(diǎn)Q,過點(diǎn)QQKAB,過CD邊上的動點(diǎn)PPKEF,并與QK交于點(diǎn)K,將PKQ沿直線PQ翻折,使點(diǎn)K的對應(yīng)點(diǎn)K′恰好落在直線AB上,求線段CP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,已知拋物線C1:y=a(x+1)2﹣4的頂點(diǎn)為C,與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),點(diǎn)B的橫坐標(biāo)是1.

(1)求點(diǎn)C的坐標(biāo)及a 的值;

(2)如圖②,拋物線C2與C1關(guān)于x軸對稱,將拋物線C2向右平移4個(gè)單位,得到拋物線C3.C3與x軸交于點(diǎn)B、E,點(diǎn)P是直線CE上方拋物線C3上的一個(gè)動點(diǎn),過點(diǎn)P作y軸的平行線,交CE于點(diǎn)F.

①求線段PF長的最大值;

②若PE=EF,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰直角ABC中,∠C=90°DBC的中點(diǎn),將ABC折疊,使點(diǎn)A與點(diǎn)D重合,EF為折痕,則cosBED的值是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某種蔬菜每千克售價(jià)(元)與銷售月份之間的關(guān)系如圖1所示,每千克成本(元)與銷售月份之間的關(guān)系如圖2所示,其中圖1中的點(diǎn)在同一條線段上,圖2中的點(diǎn)在同一條拋物線上,且拋物線的最低點(diǎn)的坐標(biāo)為(6,1).

1)求出之間滿足的函數(shù)表達(dá)式,并直接寫出的取值范圍;

2)求出之間滿足的函數(shù)表達(dá)式;

3)設(shè)這種蔬菜每千克收益為元,試問在哪個(gè)月份出售這種蔬菜,將取得最大值?并求出此最大值.(收益=售價(jià)-成本)

查看答案和解析>>

同步練習(xí)冊答案