【題目】如圖,在正方形ABCD中,AB8厘米,如果動(dòng)點(diǎn)P在線段AB上以2厘米/秒的速度由A點(diǎn)向B點(diǎn)運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q在以1厘米/秒的速度線段BC上由C點(diǎn)向B點(diǎn)運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)B點(diǎn)時(shí)整個(gè)運(yùn)動(dòng)過程停止.設(shè)運(yùn)動(dòng)時(shí)間為t秒,當(dāng)AQDP時(shí),t的值為_____秒.

【答案】2

【解析】

先證△ADP≌△BAQ,得到AP=BQ,然后用t表示出APBQ,列出方程解出t即可.

因?yàn)?/span>AQPD,所以∠BAQ+APD=90°

又因?yàn)檎叫涡再|(zhì)可到∠APD+ADP=90°,∠PAD=B=90°,AB=AD,

所以得到∠BAQ=ADP

又因?yàn)椤?/span>PAD=B=90°,AB=AD

所以△ADP≌△BAQ,得到AP=BQ

AP=2t,QC=t,BC=8-t

所以2t=8-2t,解得t=2s

故填2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)甲、乙、丙、丁四人做傳球游戲:第一次由甲將球隨機(jī)傳給乙、丙、丁中的某一人,從第二次起,每一次都由持球者將球再隨機(jī)傳給其他三人中的某一人.求第二次傳球后球回到甲手里的概率.(請用“畫樹狀圖”的方式給出分析過程)

(2)如果甲跟另外n(n≥2)個(gè)人做(1)中同樣的游戲,那么,第三次傳球后球回到甲手里的概率是 (請直接寫出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C為∠AOB的邊OA上一點(diǎn),OC=6,N為邊OB上異于點(diǎn)O的一動(dòng)點(diǎn),P是線段CN上一點(diǎn),過點(diǎn)P分別作PQ∥OA交OB于點(diǎn)Q,PM∥OB交OA于點(diǎn)M.

(1)若∠AOB=60,OM=4,OQ=1,求證:CN⊥OB.

(2)當(dāng)點(diǎn)N在邊OB上運(yùn)動(dòng)時(shí),四邊形OMPQ始終保持為菱形.

①問: 的值是否發(fā)生變化?如果變化,求出其取值范圍;如果不變,請說明理由.

②設(shè)菱形OMPQ的面積為S1,△NOC的面積為S2,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于平面直角坐標(biāo)系xOy中的點(diǎn)P和正方形給出如下定義:若正方形的對角線交于點(diǎn)O,四條邊分別和坐標(biāo)軸平行,我們稱該正方形為原點(diǎn)正方形,當(dāng)原點(diǎn)正方形上存在點(diǎn)Q,滿足PQ≤1時(shí),稱點(diǎn)P為原點(diǎn)正方形的友好點(diǎn).

(1)當(dāng)原點(diǎn)正方形邊長為4時(shí),

①在點(diǎn)P1(0,0),P2(-1,1),P3(3,2)中,原點(diǎn)正方形的友好點(diǎn)是__________;

②點(diǎn)P在直線y=x的圖象上,若點(diǎn)P為原點(diǎn)正方形的友好點(diǎn),求點(diǎn)P橫坐標(biāo)的取值范圍;

(2)乙次函數(shù)y=-x+2的圖象分別與x軸,y軸交于點(diǎn)AB,若線段AB上存在原點(diǎn)正方形的友好點(diǎn),直接寫出原點(diǎn)正方形邊長a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O是邊長為6的等邊△ABC三邊中垂線的交點(diǎn),將△ABC繞點(diǎn)O逆時(shí)針方向旋轉(zhuǎn)180°,得到△A1B1C1,則圖中陰影部分的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有甲、乙兩個(gè)長方形紙片,邊長如圖所示,面積分別為.

1)①計(jì)算:______,______;

②用“<”“=”“>”填空:______

2)若一個(gè)正方形紙片的周長與乙長方形的周長相等,面積為.

①該正方形的邊長是______(用含的代數(shù)式表示);

②小方同學(xué)發(fā)現(xiàn):的差與無關(guān).請判斷小方的發(fā)現(xiàn)是否正確,并通過計(jì)算說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線過點(diǎn)A(2,0),B(﹣1,0),與y軸交于點(diǎn)C,且OC=2,求這條拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖數(shù)軸上A、BC三點(diǎn)對應(yīng)的數(shù)分別是a、b7,滿足,,P為數(shù)軸上一動(dòng)點(diǎn),點(diǎn)PA出發(fā),沿?cái)?shù)軸正方向以每秒個(gè)單位長度的速度勻速運(yùn)動(dòng),點(diǎn)Q從點(diǎn)C出發(fā)在射線CA上向點(diǎn)A勻速運(yùn)動(dòng),P、Q兩點(diǎn)同時(shí)出發(fā).

1)求a、b的值

2)當(dāng)P運(yùn)動(dòng)到線段OB的中點(diǎn)時(shí),點(diǎn)Q運(yùn)動(dòng)的位置恰好是線段AB靠近點(diǎn)B的三等分點(diǎn),求點(diǎn)Q的運(yùn)動(dòng)速度

3)在的條件下,當(dāng)P、Q兩點(diǎn)間的距離是6個(gè)單位長度時(shí),OP的長.

查看答案和解析>>

同步練習(xí)冊答案