【題目】如圖,點(diǎn)A(﹣2,0),B(0,1),以線段AB為邊在第二象限作矩形ABCD,雙曲線y=(k<0)過(guò)點(diǎn)D,連接BD,若四邊形OADB的面積為6,則k的值是( )
A.﹣9B.﹣12C.﹣16D.﹣18
【答案】C
【解析】
過(guò)D作DM⊥x軸于M,根據(jù)相似三角形的性質(zhì)和判定求出DM=2AM,根據(jù)三角形的面積求出AM,即可求出DM和OM,得出答案即可.
解:
∵點(diǎn)A(-2,0),B(0,1),
∴OA=2,OB=1,
過(guò)D作DM⊥x軸于M,則∠DMA=90°,
∵四邊形ABCD是矩形,
∴∠DAB=90°,
∴∠DMA=∠DAB=∠AOB=90°,
∴∠DAM+∠BAO=90°,∠DAM+∠ADM=90°,
∴∠ADM=∠BAO,
∴△DMA∽△AOB,
∴=2,
即DM=2MA,
設(shè)AM=x,則DM=2x,
∵四邊形OADB的面積為6,
∴S梯形DMOB-S△DMA=6,
∴(1+2x)(x+2)-2xx=6,
解得:x=2,
則AM=2,OM=4,DM=4,
即D點(diǎn)的坐標(biāo)為(-4,4),
∴k=-4×4=-16,
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀察下列圖形:
(1)可知tanα=,tanβ=,用“畫圖法”求tan(α+β)的值,具體解法如下:
第一步:如圖1所示,構(gòu)造符合題意兩個(gè)“背靠背”的直角三角形;
第二步:如圖2所示,將圖1中所有數(shù)據(jù)同比例擴(kuò)大3倍;
第三步:如圖3所示,依托中間的Rt△ABD的各頂點(diǎn)構(gòu)造“水平﹣﹣豎直輔助線”,構(gòu)造出“一線三直角”基本相似型,并補(bǔ)成矩形ACEF;由圖可知tan(α+β)= .
(2)依據(jù)(1)的方法,已知tanα=,tanβ=,用“畫圖法”求tan(α+β)的值.
(3)擴(kuò)展延伸,已知tanα=,tanβ=,直接寫出tan(α﹣β)= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖1是一個(gè)地鐵站入口的雙翼閘機(jī).如圖2,它的雙翼展開時(shí),雙翼邊緣的端點(diǎn)A與B之間的距離為10cm,雙翼的邊緣AC=BD=54cm,且與閘機(jī)側(cè)立面夾角∠PCA=∠BDQ=30°.當(dāng)雙翼收起時(shí),可以通過(guò)閘機(jī)的物體的最大寬度為( )
A. (54+10) cm B. (54+10) cm C. 64 cm D. 54cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知AB=AC.如圖,D、E為∠BAC的平分線上的兩點(diǎn),連接BD、CD、BE、CE;如圖4, D、E、F為∠BAC的平分線上的三點(diǎn),連接BD、CD、BE、CE、BF、CF;如圖5, D、E、F、G為∠BAC的平分線上的四點(diǎn),連接BD、CD、BE、CE、BF、CF、BG、CG……依此規(guī)律,第17個(gè)圖形中有全等三角形的對(duì)數(shù)是( )
A.17B.54C.153D.171
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題呈現(xiàn):我們知道反比例函數(shù)y=(x>0)的圖象是雙曲線,那么函數(shù)y=+n(k、m、n為常數(shù)且k≠0)的圖象還是雙曲線嗎?它與反比例函數(shù)y=(x>0)的圖象有怎樣的關(guān)系呢?讓我們一起開啟探索之旅……
探索思考:我們可以借鑒以前研究函數(shù)的方法,首先探索函數(shù)y=的圖象.
(1)填寫下表,并畫出函數(shù)y=的圖象.
①列表:
x | … | ﹣5 | ﹣3 | ﹣2 | 0 | 1 | 3 | … |
y | … | … |
②描點(diǎn)并連線.
(2)觀察圖象,寫出該函數(shù)圖象的兩條不同類型的特征:
① ② ;
理解運(yùn)用:函數(shù)y=的圖象是由函數(shù)y=的圖象向 平移 個(gè)單位,其對(duì)稱中心的坐標(biāo)為 .
靈活應(yīng)用:根據(jù)上述畫函數(shù)圖象的經(jīng)驗(yàn),想一想函數(shù)y=+2的圖象大致位置,并根據(jù)圖象指出,當(dāng)x滿足 時(shí),y≥3.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公園的人工湖邊上有一座假山,假山頂上有一豎起的建筑物CD,高為10米,數(shù)學(xué)小組為了測(cè)量假山的高度DE,在公園找了一水平地面,在A處測(cè)得建筑物點(diǎn)D(即山頂)的仰角為35°,沿水平方向前進(jìn)20米到達(dá)B點(diǎn),測(cè)得建筑物頂部C點(diǎn)的仰角為45°,求假山的高度DE.(結(jié)果精確到1米,參考數(shù)據(jù):sin35°≈,cos35°≈,tan35°≈)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,E、F、G、H分別是AB、BC、CD、DA的中點(diǎn),順次連接E、F、G、H,若要使四邊形EFGH為菱形,則還需增加的條件是( )
A.AC=BDB.AC⊥BDC.AC⊥BD且AC=BDD.AB=AD
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線y=a-4ax與x軸交于A,B兩點(diǎn)(A在B的左側(cè)).
(1)求點(diǎn)A,B的坐標(biāo);
(2)已知點(diǎn)C(2,1),P(1,-a),點(diǎn)Q在直線PC上,且Q點(diǎn)的橫坐標(biāo)為4.
①求Q點(diǎn)的縱坐標(biāo)(用含a的式子表示);
②若拋物線與線段PQ恰有一個(gè)公共點(diǎn),結(jié)合函數(shù)圖象,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲,乙,丙三人做一個(gè)抽牌游戲,三張紙牌上分別寫有個(gè)數(shù)字0,x,y(x,y均為正整數(shù),且x<y),每人抽一張紙牌,紙牌上的數(shù)字就是這一輪的得分.經(jīng)過(guò)若干輪后(至少四輪),甲的總得分為20,乙的總得分為10,丙的總得分為9.則甲抽到x的次數(shù)最多為______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com