(2011湖南衡陽,26,10分)如圖,在矩形ABCD中,AD=4,AB=m(m>4),點PAB邊上的任意一點(不與A、B重合),連結PD,過點PPQPD,交直線BC于點Q
(1)當m=10時,是否存在點P使得點Q與點C重合?若存在,求出此時AP的長;若不存在,說明理由;
(2)連結AC,若PQAC,求線段BQ的長(用含m的代數(shù)式表示)
(3)若△PQD為等腰三角形,求以P、Q、C、D為頂點的四邊形的面積Sm之間的函數(shù)關系式,并寫出m的取值范圍.

【解】(1) 假設當m=10時,存在點P使得點Q與點C重合(如下圖),

PQPD∴∠DPC=90°,∴∠APD+∠BPC=90°,
又∠ADP+∠APD=90°,∴∠BPC=∠ADP,
又∠B=∠A=90°,∴△PBC∽△DAP,∴,
,∴或8,∴存在點P使得點Q與點C重合,出此時AP的長2 或8.
(2)如下圖,∵PQAC,∴∠BPQ=∠BAC,∵∠BPQ=∠ADP,∴∠BAC=∠ADP,又∠B=∠DAP=90°,∴△ABC∽△DAP,∴,即,∴

PQAC,∴∠BPQ=∠BAC,∵∠B=∠B,∴△PBQ∽△ABC,,即,∴
(3)由已知PQPD,所以只有當DP=PQ時,△PQD為等腰三角形(如圖),

∴∠BPQ=∠ADP,又∠B=∠A=90°,∴△PBQ≌△DAP,
PB=DA=4,AP=BQ=,
∴以PQ、C、D為頂點的四邊形的面積Sm之間的函數(shù)關系式為:S四邊形PQCD= S矩形ABCDSDAPSQBP=
==16(4<≤8).

解析

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2011湖南衡陽,24,8分)如圖,△ABC內接于⊙O,CA=CB,CDAB且與OA的延長線交與點D
(1)判斷CD與⊙O的位置關系并說明理由;
(2)若∠ACB=120°,OA=2,求CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源:2011年初中畢業(yè)升學考試(湖南衡陽卷)數(shù)學 題型:解答題

(2011湖南衡陽,20,6分)解不等式組,并把解集在數(shù)軸上表示出來.

查看答案和解析>>

科目:初中數(shù)學 來源:2011年初中畢業(yè)升學考試(湖南衡陽卷)數(shù)學 題型:解答題

(2011湖南衡陽,21,6分)如圖,在△ABC中,AD是中線,分別過點B、CAD及其延長線的垂線BECF,垂足分別為點EF.求證:BE=CF

查看答案和解析>>

科目:初中數(shù)學 來源:2011年初中畢業(yè)升學考試(湖北隨州卷)數(shù)學 題型:填空題

(2011湖南衡陽,16,3分)如圖,⊙的直徑過弦的中點G,∠EOD=40°,則∠FCD的度數(shù)為     

 

 

查看答案和解析>>

同步練習冊答案