【題目】如圖,直線y1=kx+b與雙曲線y2= 交于A、B兩點,它們的橫坐標(biāo)分別為1和5.
(1)當(dāng)m=5時,求直線AB的解析式及△AOB的面積;
(2)當(dāng)y1>y2時,直接寫出x的取值范圍.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點E在邊AD上,點F在邊BC的延長線上,連結(jié)EF與邊CD相交于點G,連結(jié)BE與對角線AC相交于點H,AE=CF,BE=EG.
(1)求證:EF∥AC;
(2)求∠BEF大小;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,港口A在觀測站O的正東方向,OA=6km,某船從港口A出發(fā),沿北偏東15°方向航行一段距離后到達B處,此時從觀測站O處測得該船位于北偏東60°的方向,則該船航行的距離(即AB的長)為( )
A.3 km
B.3 km
C.4 km
D.(3 ﹣3)km
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形ABCD的邊長為2,過點A作射線AM與線段BD交于點M,∠BAM=α(0°<α<90°),作CE⊥AM于點E,點N與點M關(guān)于直線CE對稱,連接CN.
(1)如圖①,當(dāng)0°<α<45°時,
①依題意在圖①中補全圖并證明:AM=CN ②當(dāng)BD∥CN,求DM的值
(2)探究∠NCE與∠BAM之間的數(shù)量關(guān)系并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)與一次函數(shù)的圖象交于點A(-2,6)、點B(,1).
(1)求反比例函數(shù)與一次函數(shù)的表達式;
(2)點E為y軸上一個動點,若S△AEB=5,求點E的坐標(biāo).
(3)將一次函數(shù)的圖象沿軸向下平移n個單位,使平移后的圖象與反比例函數(shù)的圖象有且只有一個交點,求n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究多邊形內(nèi)角和問題.
連接多邊形不相鄰的兩個頂點的線段叫做多邊形的對角線.從多邊形某一個頂點出發(fā)的×對角線可以把一個多邊形分成幾個三角形.這樣就把多邊形內(nèi)角和問題轉(zhuǎn)化為三角形內(nèi)角和問題了.
(1)請你試一試,做一做,把下面表格補充完整:
名稱 | 圖形 | 內(nèi)角和 |
三角形 | 180° | |
四邊形 | 2×180°=360° | |
五邊形 |
| |
六邊形 |
| |
… | … | … |
根據(jù)表格探究發(fā)現(xiàn)的規(guī)律,完成下面的問題:
(2)七邊形的內(nèi)角和等于 度;
(3)如果一個多邊形有n條邊,請你用含有n的代數(shù)式表示這個多邊形的內(nèi)角和: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】利用網(wǎng)格畫圖:
(1)過點C畫AB的平行線;
(2)過點C畫AB的垂線,垂足為E;
(3)連接CA、CB,在線段CA、CB、CE中, 線段最短,理由: ;
(4)點C到直線AB的距離是線段的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某城市居民用水實行階梯收費,每戶每月用水量如果未超過20噸,按每噸元收費如果超過20噸,未超過的部分按每噸元收費,超過的部分按每噸元收費設(shè)某戶每月用水量為x噸,應(yīng)收水費為y元.
設(shè)某戶居民每月用水量為m噸,則應(yīng)收水費為______元用含m的代數(shù)式表示;
設(shè)某戶居民每月用水量為m噸,則應(yīng)收水費為______元用含m的代數(shù)式表示;
若該城市某戶5月份水費平均為每噸元,求該戶5月份用水多少噸?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com