已知:如圖,在直角坐標(biāo)系xoy中,以x軸的負(fù)半軸上一點(diǎn)H為圓心作⊙H與x軸交于A、B兩點(diǎn),與y軸交于C、D兩點(diǎn).以C為圓心、OC為半徑作⊙C與⊙H交于F、F兩點(diǎn),與y軸交于O、Q兩點(diǎn).直線EF與AC、BC、y軸分別于M、N、G三點(diǎn).直線y=
34
x+3
經(jīng)過A、C兩點(diǎn).
(1)求tan∠CNM的值;
(2)連接OM、ON,問:四邊形CMON是怎樣的四邊形?請說明理由.
(3)如圖,R是⊙C中弧EQ上的一動(dòng)點(diǎn)(不與E點(diǎn)重合),過R作⊙C的切線RT,若RT與⊙H相交于S、T不同兩點(diǎn).問:CS•CT的值是否發(fā)生變化?若不變,請說明理由,并求其值;若變化,請求其值的變化范圍.
精英家教網(wǎng)
分析:(1)連接CH,則CH⊥EF,即∠CNM+∠HCB=90°.再根據(jù)題意得出∠CNM=∠CAB.由y=
3
4
x+3過A、C,從而得出tan∠CNM的值.
(2)由GD•GC=GE•GF,GO•GQ=GE•GF,得GO•GQ=GD•GC,則GO=GC.還可證得GC=GM,則GO=GC=GM=GN,從而得出四邊形OMCN是矩形.
(3)連接CR,過C作⊙H的直徑CL,連接SL.易證△CLS∽△CTR,即
CL
CT
=
CS
CR
,從而得出CS•CT的值不變,是定值.
解答:精英家教網(wǎng)解:(1)連接CH,
則CH⊥EF,即∠CNM+∠HCB=90°.
而∠HCB=∠CBA,即∠CNM+∠CBA=90°.
又∵∠CAB+∠CBA=90°,
∴∠CNM=∠CAB.
由y=
3
4
x+3過A、C,則OC=3,AO=4,
即tan∠CNM=tan∠CAB=
3
4
;

(2)由GD•GC=GE•GF,GO•GQ=GE•GF,得GO•GQ=GD•GC,
即GO(GC+CQ)=(GO+OD)•GC,則GO=GC.
又∠CMG=∠CBA=∠ACO,
即GC=GM,則GO=GC=GM=GN,
故四邊形OMCN是矩形;

(3)連接CR,過C作⊙H的直徑CL,連接SL.
易證△CLS∽△CTR,即
CL
CT
=
CS
CR
,
則CS•CT=CL•CR=AB•OC=(4+
9
4
)×3=
75
4

故CS•CT的值不變?yōu)?span id="yc6yq13" class="MathJye" mathtag="math" style="whiteSpace:nowrap;wordSpacing:normal;wordWrap:normal">
75
4
點(diǎn)評(píng):本題是一道綜合題,考查了相交兩圓的性質(zhì)、圓內(nèi)接四邊形的性質(zhì)、相似三角形的判定和性質(zhì)等知識(shí)點(diǎn),是中考?jí)狠S題,難度較大.注:(1)利用了等角代換來求三角函數(shù)的值,這是在圓中常碰到的事.
(2)充分運(yùn)用幾何圖形的性質(zhì)模索出MN與OC相等且互相平分,從而正確地判斷圖形.
(3)通過相似三角形,硬性求出CS•CT的值,這是處理這類問題的又一方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖(1)已知,矩形ABDC的邊AC=3,對(duì)角線長為5,將矩形ABDC置于直角坐系內(nèi),點(diǎn)D與原點(diǎn)O重合.且反比例函數(shù)y=
k
x
的圖象的一個(gè)分支位于第一象限.
(1)求點(diǎn)A的坐標(biāo);
(2)若矩形ABDC從圖(1)的位置開始沿x軸的正方向移動(dòng),每秒移動(dòng)1個(gè)單位,1秒后點(diǎn)A剛好落在反比例函數(shù)y=
k
x
的圖象的圖象上,求k的值;
(3)矩形ABCD繼續(xù)向x軸的正方向移動(dòng),AB、AC與反比例函數(shù)圖象分別交于P、Q如圖(2),設(shè)移動(dòng)的總時(shí)間為t(1<t<5),分別寫出△BPD的面積S1、△DCQ的面積S2與t的函數(shù)關(guān)系式;
(4)在(3)的情況下,當(dāng)t為何值時(shí),S2=
10
7
S1?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年甘肅省蘭州四中九年級(jí)(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

如圖(1)已知,矩形ABDC的邊AC=3,對(duì)角線長為5,將矩形ABDC置于直角坐系內(nèi),點(diǎn)D與原點(diǎn)O重合.且反比例函數(shù)y=的圖象的一個(gè)分支位于第一象限.
(1)求點(diǎn)A的坐標(biāo);
(2)若矩形ABDC從圖(1)的位置開始沿x軸的正方向移動(dòng),每秒移動(dòng)1個(gè)單位,1秒后點(diǎn)A剛好落在反比例函數(shù)y=的圖象的圖象上,求k的值;
(3)矩形ABCD繼續(xù)向x軸的正方向移動(dòng),AB、AC與反比例函數(shù)圖象分別交于P、Q如圖(2),設(shè)移動(dòng)的總時(shí)間為t(1<t<5),分別寫出△BPD的面積S1、△DCQ的面積S2與t的函數(shù)關(guān)系式;
(4)在(3)的情況下,當(dāng)t為何值時(shí),S2=S1?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年初中畢業(yè)升學(xué)考試(四川巴中卷)數(shù)學(xué)(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與y軸交于點(diǎn)A,

與x軸交于點(diǎn)B,與反比例函數(shù)的圖象分別交于點(diǎn)M,N,已知△AOB的面積為1,點(diǎn)M的縱坐

標(biāo)為2,

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)直接寫出時(shí)x的取值范圍。

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆安徽滁州八年級(jí)下期末模擬數(shù)學(xué)試卷(滬科版)(解析版) 題型:解答題

已知:如圖1,平面直角坐標(biāo)系中,四邊形OABC是矩形,點(diǎn)A,C的坐

標(biāo)分別為(6,0),(0,2).點(diǎn)D是線段BC上的一個(gè)動(dòng)點(diǎn)(點(diǎn)D與點(diǎn)B,C不重合),過點(diǎn)D作直線=-交折線O-A-B于點(diǎn)E.

(1)在點(diǎn)D運(yùn)動(dòng)的過程中,若△ODE的面積為S,求S與的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

(2)如圖2,當(dāng)點(diǎn)E在線段OA上時(shí),矩形OABC關(guān)于直線DE對(duì)稱的圖形為矩形O′A′B′C′,C′B′分別交CB,OA于點(diǎn)D,M,O′A′分別交CB,OA于點(diǎn)N,E.求證:四邊形DMEN是菱形;

(3)問題(2)中的四邊形DMEN中,ME的長為____________.

    

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(廣西欽州卷)數(shù)學(xué) 題型:解答題

(本題滿分8分)已知四邊形ABCD是邊長為4的正方形,以AB為直徑在正方形內(nèi)作半圓,P是半圓上的動(dòng)點(diǎn)(不與點(diǎn)A、B重合),連接PA、PB、PC、PD.

    (1)如圖①,當(dāng)PA的長度等于 

時(shí),∠PAB=60°;

              當(dāng)PA的長度等于    時(shí),△PAD是等腰三角形;

    (2)如圖②,以AB邊所在直線為x軸、AD邊所在直線為y軸,建立如圖所示的直角

坐標(biāo)系(點(diǎn)A即為原點(diǎn)O),把△PAD、△PAB、△PBC的面積分別記為S1、S2、S3.坐

標(biāo)為(ab),試求2 S1 S3-S22的最大值,并求出此時(shí)ab的值.

 

查看答案和解析>>

同步練習(xí)冊答案