【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)P的坐標(biāo)為(x1,y1),點(diǎn)Q的坐標(biāo)為(x2,y2),且x1x2,y1y2.若PQ為某個(gè)矩形的兩個(gè)頂點(diǎn),且該矩形的邊均與某條坐標(biāo)軸垂直,則稱該矩形為點(diǎn)P,Q的“相關(guān)矩形”,下圖為點(diǎn)P,Q的“相關(guān)矩形”的示意圖.

已知點(diǎn)A的坐標(biāo)為(1,0),

1)若點(diǎn)B的坐標(biāo)為(3,1),求點(diǎn)AB的“相關(guān)矩形”的面積;

2)點(diǎn)C在直線x3上,若點(diǎn)A,C的“相關(guān)矩形”為正方形,求直線AC的表達(dá)式;

3)若點(diǎn)D的坐標(biāo)為(4,2),將直線y2x+b平移,當(dāng)它與點(diǎn)A,D的“相關(guān)矩形”沒有公共點(diǎn)時(shí),求出b的取值范圍.

【答案】12;(2;(3

【解析】

1)由相關(guān)矩形的定義可知:要求AB的相關(guān)矩形面積,則AB必為對(duì)角線,利用A、B兩點(diǎn)的坐標(biāo)即可求出該矩形的底與高的長度,進(jìn)而可求出該矩形的面積;

2)由定義可知,AC必為正方形的對(duì)角線,所以ACx軸的夾角必為45,設(shè)直線AC的解析式為;y=kx+b,由此可知k=±1,再(10)代入y=kx+b,即可求出b的值;

3)分別把點(diǎn)A、D點(diǎn)的坐標(biāo)代入y=2x+b±2,求得b的數(shù)值即可.

1)∵A1,0),B31

由定義可知:點(diǎn)A,B相關(guān)矩形的底與高分別為21

∴點(diǎn)A,B相關(guān)矩形的面積為2×1=2;

2)由定義可知:AC是點(diǎn)A,C相關(guān)矩形的對(duì)角線,

又∵點(diǎn)A,C相關(guān)矩形為正方形

∴直線ACx軸的夾角為45°,

設(shè)直線AC的解析為:y=x+my=-x+n

把(10)分別y=x+m,

m=-1,

∴直線AC的解析為:y=x-1

把(1,0)代入y=-x+n,

n=1,

y=-x+1

綜上所述,若點(diǎn)A,C相關(guān)矩形為正方形,直線AC的表達(dá)式為y=x-1y=-x+1;

3)把A1,0),D4,2)分別代入y=2x+b±2,

得出b=0,或b=-8,

b0b-8

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了測量被池塘隔開的A,B兩點(diǎn)之間的距離,根據(jù)實(shí)際情況,作出如圖所示的圖形其中ABBE,EFBE,AFBE于點(diǎn)D,CBD有四位同學(xué)分別測量出以下4組數(shù)據(jù):①BC,ACB;CD,ACB,ADB;EF,DE,BD;DE,DC,BC.能根據(jù)所測數(shù)據(jù),求出A,B兩點(diǎn)之間距離的有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“九宮圖”傳說是遠(yuǎn)古時(shí)代洛河中的一個(gè)神龜背上的圖案,故又稱“龜背圖”,中國古代數(shù)學(xué)史上經(jīng)常研究這一神話。

⑴現(xiàn)有1,2,3,4,5,6,7,8,9共九個(gè)數(shù)字,請(qǐng)將它們分別填入圖1的九個(gè)方格中,使得每行的三個(gè)數(shù)、每列的三個(gè)數(shù)、斜對(duì)角的三個(gè)數(shù)之和都等于15.

⑵通過研究問題⑴,利用你發(fā)現(xiàn)的規(guī)律,將3,5,-7,1,7,-3,9,-5,-1

這九個(gè)數(shù)字分別填入圖2的九個(gè)方格中,使得橫、豎、斜對(duì)角的所有三個(gè)數(shù)的和都相等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在ABCDEF中,∠A=40°,∠E+F=100°,將DEF如圖擺放,使得∠D的兩條邊分別經(jīng)過點(diǎn)B和點(diǎn)C

1)當(dāng)將DEF如圖1擺放時(shí),則∠ABD+ACD= 度;

2)當(dāng)將DEF如圖2擺放時(shí),請(qǐng)求出∠ABD+ACD的度數(shù),并說明理由.

3)能否將DE擺放到某個(gè)位置時(shí),使得BDCD同時(shí)平分∠ABC和∠ACB?直接寫出結(jié)論 (填不能

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC,DBC邊的中點(diǎn),點(diǎn)E,F分別在AD及其延長線上,且CEBF,連接BE,CF

1)求證:四邊形EBFC是菱形;

2)若BD4,BE5,求四邊形EBFC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某九年級(jí)制學(xué)校圍繞每天30分鐘的大課間,你最喜歡的體育活動(dòng)項(xiàng)目是什么?(只寫一項(xiàng))的問題,對(duì)在校學(xué)生進(jìn)行隨機(jī)抽樣調(diào)查,從而得到一組數(shù)據(jù).圖1是根據(jù)這組數(shù)據(jù)繪制的條形統(tǒng)計(jì)圖,請(qǐng)結(jié)合統(tǒng)計(jì)圖回答下列問題:

(1)該校對(duì)多少學(xué)生進(jìn)行了抽樣調(diào)查?

(2)本次抽樣調(diào)查中,最喜歡籃球活動(dòng)的有多少?占被調(diào)查人數(shù)的百分比是多少?

(3)若該校九年級(jí)共有200名學(xué)生,圖2是根據(jù)各年級(jí)學(xué)生人數(shù)占全校學(xué)生總?cè)藬?shù)的百分比繪制的扇形統(tǒng)計(jì)圖,請(qǐng)你估計(jì)全校學(xué)生中最喜歡跳繩活動(dòng)的人數(shù)約為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A、B分別在射線OM、ON上運(yùn)動(dòng)(不與點(diǎn)O重合).

1)如圖1,若∠MON=90°,∠OBA、∠OAB的平分線交于點(diǎn)C,則∠ACB= °
2)如圖2,若∠MON=n°,∠OBA、∠OAB的平分線交于點(diǎn)C,求∠ACB的度數(shù);
3)如圖2,若∠MON=n°AOB的外角∠ABN、∠BAM的平分線交于點(diǎn)D,求∠ACB與∠ADB之間的數(shù)量關(guān)系,并求出∠ADB的度數(shù);
4)如圖3,若∠MON=80°,BC是∠ABN的平分線,BC的反向延長線與∠OAB的平分線交于點(diǎn)E.試問:隨著點(diǎn)A、B的運(yùn)動(dòng),∠E的大小會(huì)變嗎?如果不會(huì),求∠E的度數(shù);如果會(huì),請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,ADAB

1)分別作∠ABC和∠BCD的平分線,交ADE、F

2)線段AFDE相等嗎?請(qǐng)證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點(diǎn)坐標(biāo)為(1,n),拋物線與x軸的一個(gè)交點(diǎn)在點(diǎn)(3,0)和(4,0)之間.則下列結(jié)論

①a-b+c>0;②3a+b=0;

③b2=4a(c-n);

④一元二次方程ax2+bx+c=n-1有兩個(gè)不相等的實(shí)數(shù)根.

其中正確結(jié)論的個(gè)數(shù)是(  )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

同步練習(xí)冊答案