將圖中的△ABC做下列運動,畫出相應(yīng)的圖形,并指出三個頂點的坐標所發(fā)生的變化.

(1)沿y軸負方向平移3個單位;

(2)關(guān)于y軸對稱;

(3)以點B為位似中心,放大到2倍.

答案:
解析:

  解:如圖所示

  (1)將△ABC沿y軸負方向平移3個單位后得△A1B1C1、A1(0,-5)、B1(3,-4)、C1(2,-2),即橫坐標不變,縱坐標減3;

  (2)將△ABC關(guān)于y軸對稱后得△A2B2C2.A2(0,-2)、B2(-3,-1)、C2(-2,1),即縱坐標不變,橫坐標變?yōu)樵瓉淼南喾磾?shù);

  (3)將△ABC以點B為位似中心,放大到2倍后得△A3B3C3

  A3(-3,-3)、B3(3,-1)、C3(1,3)

  即點A是線段B3A3的中點,點C是線段B3C3的中點

  設(shè)C(xc,yc)、B3(,)、C3(),根據(jù)求線段中點坐標的

  公式可得xc=.從而得出=2xc

  代入得=2×2-3=1,同理=2yc=2×1-(-1)=3,

  故可得C3(1,3).同理可求得A3(-3,-3).


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

附加題,學(xué)完“幾何的回顧”一章后,老師布置了一道思考題:
如圖,點M,N分別在正三角形ABC的BC,CA邊上,且BM=CN,AM,BN交于點Q.求證:∠BQM=60度.
(1)請你完成這道思考題;
(2)做完(1)后,同學(xué)們在老師的啟發(fā)下進行了反思,提出了許多問題,如:
①若將題中“BM=CN”與“∠BQM=60°”的位置交換,得到的是否仍是真命題?
②若將題中的點M,N分別移動到BC,CA的延長線上,是否仍能得到∠BQM=60°?
③若將題中的條件“點M,N分別在正三角形ABC的BC,CA邊上”改為“點M,N分別在正方形ABCD的BC,CD邊上”,是否仍能得到∠BQM=60°?…
請你作出判斷,在下列橫線上填寫“是”或“否”:①
 
;②精英家教網(wǎng)
 
;③
 
.并對②,③的判斷,選擇一個給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在復(fù)習(xí)課上,老師布置了一道思考題:如圖所示,點M,N分別在等邊△ABC的BC、CA邊上,且BM精英家教網(wǎng)=CN,AM、BN交于點Q,求證:∠BQM=60°.
(1)請你完成這道思考題;
(2)做完(1)后,同學(xué)們在老師的啟發(fā)下進行了反思,提出許多問題,譬如:
①若將題中“BM=CN”與“∠BQM=60°”的位置交換,得到的是否仍是真命題?
②若將題中的點M,N分別移動到BC,CA的延長線上,是否仍能得到∠BQM=60°?請你選擇其中一個問題并畫出圖形,給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2008•紹興)學(xué)完“幾何的回顧”一章后,老師布置了一道思考題:
如圖,點M,N分別在正三角形ABC的BC,CA邊上,且BM=CN,AM,BN交于點Q.求證:∠BQM=60度.
(1)請你完成這道思考題;
(2)做完(1)后,同學(xué)們在老師的啟發(fā)下進行了反思,提出了許多問題,如:
①若將題中“BM=CN”與“∠BQM=60°”的位置交換,得到的是否仍是真命題?
②若將題中的點M,N分別移動到BC,CA的延長線上,是否仍能得到∠BQM=60°?
③若將題中的條件“點M,N分別在正三角形ABC的BC,CA邊上”改為“點M,N分別在正方形ABCD的BC,CD邊上”,是否仍能得到∠BQM=60°?…
請你作出判斷:①
;②
;③
.并對②,③的判斷,選擇一個給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(滿分l2分)學(xué)完“等邊三角形”這一節(jié)后,老師布置了一道思考題:
如圖,點M,N分別在正三角形ABC的BC,CA邊上,且BM=CN,AM,BN交于點Q.
求證:∠BQM=60°.
(1)請你完成這道思考題;
(2)做完(1)后,同學(xué)們在老師的啟發(fā)下進行了反思,提出了許多問題,如:
①若將題中“BM=CN”與“∠BQM=60°”的位置交換,得到的是否仍是真命題?
②若將題中的點M,N分別移動到BC,CA的延長線上,是否仍能得到∠BQM=60°?
③若將題中的條件“點M,N分別在正三角形ABC的BC,CA邊上”改為“點M,N分別在正方形ABCD的BC,CD邊上”,是否仍能得到∠BQM=60°?
請你作出判斷,在下列橫線上填寫“是”或“否”:①______;②______;③______.并對②,③的判斷,選擇一個給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年江西省九年級第一次段考數(shù)學(xué)試卷(解析版) 題型:解答題

學(xué)完“證明(二)”一章后,老師布置了一道思考題:如圖,點M、N分別在正三角形ABC的邊BC.CA上,且BM=CN,AM、BN交于點Q。求證:∠BQM=60°。

(1)請你完成這道思考題;

(2)做完(1)后,同學(xué)們在老師的啟發(fā)下進行了反思,提出了許多問題,如:

①若將題中“BM=CN”與“∠BQM=60°”的位置交換,得到的是否仍是真命題?

②若將題中的點M,N分別移動到BC,CA的延長線上,是否仍能得到∠BQM=60°?

③若將題中的條件“點M,N分別在正三角形ABC的BC、CA邊上”改為“點M,N分別在正方形ABCD的BC,CD邊上”,是否仍能得到∠BQM=60°?對②,③進行證明。(自己畫出對應(yīng)的圖形)

 

查看答案和解析>>

同步練習(xí)冊答案