【題目】如圖,二次函數(shù)的圖象過(guò)點(diǎn)A3,0),對(duì)稱軸為直線,給出以下結(jié)論:

;②;③;④若M-3)、N6)為函數(shù)圖象上的兩點(diǎn),則,其中正確的是____________.(只要填序號(hào))

【答案】①②③

【解析】

①根據(jù)函數(shù)圖像的開口、對(duì)稱軸以及與y軸的交點(diǎn)可得出a、bc的正負(fù),即可判斷正誤;

②根據(jù)函數(shù)對(duì)稱軸可得出a、b之間的等量關(guān)系,將轉(zhuǎn)化為,再由函數(shù)與x軸的交點(diǎn)關(guān)于對(duì)稱軸對(duì)稱,可得出另一個(gè)交點(diǎn)是(-1,0),即可得出的結(jié)果,即可判斷正誤;

③根據(jù)a、b之間的等量關(guān)系,將不等式中的b代換成a,化簡(jiǎn)不等式即可判斷正誤;

④根據(jù)開口向下的函數(shù)有最大值,距離頂點(diǎn)越近的函數(shù)值越大,先判斷M、N距離頂點(diǎn)的距離即可判斷兩個(gè)點(diǎn)y值得大小.

解:①∵函數(shù)開口向下,∴,

∵對(duì)稱軸,,;

∵函數(shù)與y軸交點(diǎn)在y軸上半軸,∴

;所以①正確;

②∵函數(shù)對(duì)稱軸為,

,∴,

A3,0)是函數(shù)與x軸交點(diǎn),對(duì)稱軸為,

∴函數(shù)與x軸另一交點(diǎn)為(-1,0);

∵當(dāng)時(shí),,

,②正確;

③∵函數(shù)對(duì)稱軸為

,

∴將帶入可化為:

,不等式左右兩邊同除a需要不等號(hào)變方向,可得:

,此不等式一定成立,所以③正確;

M-3,)、N6,)為函數(shù)圖象上的兩點(diǎn),

∵點(diǎn)M距離頂點(diǎn)4個(gè)單位長(zhǎng)度,N點(diǎn)距離頂點(diǎn)5個(gè)單位長(zhǎng)度,函數(shù)開口向下,距離頂點(diǎn)越近,函數(shù)值越大,

,所以④錯(cuò)誤.

故答案為①②③.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,D、E分別是ABCAB、BC上的點(diǎn),AD=2BD,BE=CE,若SABC=18,設(shè)ADF的面積為S1CEF的面積為S2,則S1-S2的值是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABC,C=90°ACBC,DBC上一點(diǎn),且到A,B兩點(diǎn)的距離相等.

1)用直尺和圓規(guī),作出點(diǎn)D的位置(不寫作法,保留作圖痕跡);

2)連結(jié)AD,若∠B=33°,則∠CAD=  °

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】直線ykxb與拋物線yx2交于A(x1y1),B(x2y2)兩點(diǎn),當(dāng)OAOB時(shí),直線AB恒過(guò)一個(gè)定點(diǎn),該定點(diǎn)坐標(biāo)為___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,ACBD相交于點(diǎn)O,點(diǎn)EOA的中點(diǎn),連接BE并延長(zhǎng)交AD于點(diǎn)F,已知SAEF=4,則下列結(jié)論:①;SBCE=36;SABE=12;④△AEFACD,其中一定正確的是(  )

A. ①②③④ B. ①④ C. ②③④ D. ①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示平面直角坐標(biāo)系中,已知A(-2,2),B(-3,-2),C(3,-2).

(1)在圖中畫出△ABC;

(2)將△ABC先向上平移4個(gè)單位長(zhǎng),再向右平移2個(gè)單位長(zhǎng)得到△A1B1C1,寫出點(diǎn)A1,B1,C1的坐標(biāo);

(3)求△A1B1C1的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)要求,解答下列問(wèn)題:

(1)①方程x2﹣x﹣2=0的解為   ;

方程x2﹣2x﹣3=0的解為   ;

方程x2﹣3x﹣4=0的解為   

(2)根據(jù)以上方程特征及其解的特征,請(qǐng)猜想:

方程x2﹣9x﹣10=0的解為   

請(qǐng)用配方法解方程x2﹣9x﹣10=0,以驗(yàn)證猜想結(jié)論的正確性.

(3)應(yīng)用:關(guān)于x的方程   的解為x1=﹣1,x2=n+1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知拋物線x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),交y軸的正半軸于點(diǎn)C,其頂點(diǎn)為MMHx軸于點(diǎn)H,MAy軸于點(diǎn)N,sinMOH

1)求此拋物線的函數(shù)表達(dá)式;

2)過(guò)H的直線與y軸相交于點(diǎn)P,過(guò)O,M兩點(diǎn)作直線PH的垂線,垂足分別為E,F,若 時(shí),求點(diǎn)P的坐標(biāo);

3)將(1)中的拋物線沿y軸折疊,使點(diǎn)A落在點(diǎn)D處,連接MD,Q為(1)中的拋物線上的一動(dòng)點(diǎn),直線NQx軸于點(diǎn)G,當(dāng)Q點(diǎn)在拋物線上運(yùn)動(dòng)時(shí),是否存在點(diǎn)Q,使ANG ADM相似?若存在,求出所有符合條件的直線QG的解析式;若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)銷售A、B兩種品牌的教學(xué)設(shè)備,這兩種教學(xué)設(shè)備的進(jìn)價(jià)和售價(jià)如下表所示:

教學(xué)設(shè)備

A

B

進(jìn)價(jià)(萬(wàn)元/套)

3

2.4

售價(jià)(萬(wàn)元/套)

3.3

2.8

該商場(chǎng)計(jì)劃購(gòu)進(jìn)兩種教學(xué)設(shè)備若干套,共需132萬(wàn)元,全部銷售后可獲毛利潤(rùn)18萬(wàn)元.

1)該商場(chǎng)計(jì)劃購(gòu)進(jìn)AB兩種品牌的教學(xué)設(shè)備各多少套?

2)通過(guò)市場(chǎng)調(diào)查,該商場(chǎng)決定在原計(jì)劃的基礎(chǔ)上,減少A種設(shè)備的購(gòu)進(jìn)數(shù)量,增加B種設(shè)備的購(gòu)進(jìn)數(shù)量,已知B種設(shè)備增加的數(shù)量是A種設(shè)備減少數(shù)量的1.5倍.若用于購(gòu)進(jìn)這兩種教學(xué)設(shè)備的總資金不超過(guò)138萬(wàn)元,則A種設(shè)備購(gòu)進(jìn)數(shù)量最多減少多少套?

查看答案和解析>>

同步練習(xí)冊(cè)答案