【題目】如圖(1),菱形ABCD對角線AC、BD的交點O是四邊形EFGH對角線FH的中點,四個頂點A、B、C、D分別在四邊形EFGH的邊EF、FG、GH、HE上.

(1)求證:四邊形EFGH是平行四邊形;

(2)如圖(2)若四邊形EFGH是矩形,當(dāng)AC與FH重合時,已知,且菱形ABCD的面積是20,求矩形EFGH的長與寬.

【答案】(1)證明見解析;(2)矩形EFGH的長為8,寬為4.

【解析】

試題分析:(1)根據(jù)菱形的性質(zhì)可得出OA=OC,OD=OB,再由中點的性質(zhì)可得出OF=OH,結(jié)合對頂角相等即可利用全等三角形的判定定理(SAS)證出AOF≌△COH,從而得出AFCH,同理可得出DHBF,依據(jù)平行四邊形的判定定理即可證出結(jié)論;

(2)設(shè)矩形EFGH的長為a、寬為b.根據(jù)勾股定理及邊之間的關(guān)系可找出AC=,BD=,利用菱形的性質(zhì)、矩形的性質(zhì)可得出AOB=AGH=90°,從而可證出BAO∽△CAG,根據(jù)相似三角形的性質(zhì)可得出,套入數(shù)據(jù)即可得出a=2b①,再根據(jù)菱形的面積公式得出②,聯(lián)立①②解方程組即可得出結(jié)論.

試題解析:(1)證明:點O是菱形ABCD對角線AC、BD的交點,OA=OC,OD=OB,點O是線段FH的中點,OF=OH.在AOF和COH中,OA=OC,AOF=COH,OF=OH,∴△AOF≌△COH(SAS),∴∠AFO=CHO,AFCH.

同理可得:DHBF,四邊形EFGH是平行四邊形.

(2)設(shè)矩形EFGH的長為a、寬為b,則AC=

=2,BD=AC=,OB=BD=,OA=AC=

四邊形ABCD為菱形,ACBD,∴∠AOB=90°.

四邊形EFGH是矩形,∴∠AGH=90°,∴∠AOB=AGH=90°,又∵∠BAO=CAG,∴△BAO∽△CAG,,即,解得:a=2b①.

S菱形ABCD=ACBD==20,②.

聯(lián)立①②得:,解得:,或(舍去),矩形EFGH的長為8,寬為4.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,點A坐標(biāo)為(﹣4,4),點B的坐標(biāo)為(4,0).

(1)求直線AB的解析式;
(2)點M是坐標(biāo)軸上的一個點,若AB為直角邊構(gòu)造直角三角形△ABM,請求出滿足條件的所有點M的坐標(biāo);
(3)如圖2,以點A為直角頂點作∠CAD=90°,射線AC交x軸的負(fù)半軸與點C,射線AD交y軸的負(fù)半軸與點D,當(dāng)∠CAD繞點A旋轉(zhuǎn)時,OC﹣OD的值是否發(fā)生變化?若不變,直接寫出它的值;若變化,直接寫出它的變化范圍(不要解題過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運算正確的是(
A.﹣(﹣1)=﹣1
B.|﹣3|=﹣3
C.﹣22=4
D.(﹣3)÷(﹣ )=9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,函數(shù)y=2x和y=﹣x的圖象分別為直線l1,l2,過點(1,0)作x軸的垂線交l2于點A1,過點A1作y軸的垂線交l2于點A2,過點A2作x軸的垂線交l2于點A3,過點A3作y軸的垂線交l2于點A4,…依次進(jìn)行下去,則點A2017的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AD⊥BC于D,BE⊥AC于E,AD與BE相交于F,若BF=AC,則∠ABC的大小是(
A.40°
B.45°
C.50°
D.60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】課堂上老師布置給每個小組一個任務(wù),用抽樣調(diào)查的方法估計全班同學(xué)的平均身高,坐在教室最后面的小強(qiáng)為了爭速度,立即就近向他周圍的三個同學(xué)做調(diào)查,計算出他們四個人的平均身高后就舉手向老師示意已經(jīng)完成任務(wù)了.小強(qiáng)所選用的這種抽樣調(diào)查的方式你認(rèn)為合適嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列關(guān)系式中,正確的是(
A.(a+b)2=a2﹣2ab+b2
B.(a﹣b)2=a2﹣b2
C.(a+b)2=a2+b2
D.(a+b)(a﹣b)=a2﹣b2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,△ABP與△CDP是兩個全等的等邊三角形,且PA⊥PD,有下列四個結(jié)論:①∠PBC=15°,②AD∥BC,③PC⊥AB,④四邊形ABCD是軸對稱圖形,其中正確的個數(shù)為(
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列調(diào)查中適合采用普查的是( )

A. 調(diào)查市場上某種白酒中塑化劑的含量 B. 調(diào)查鞋廠生產(chǎn)的鞋底能承受的彎折次數(shù)

C. 了解某城市居民收看新聞聯(lián)播的情況 D. 了解某火車的一節(jié)車廂內(nèi)感染禽流感病毒的人數(shù)

查看答案和解析>>

同步練習(xí)冊答案