【題目】在平面直角坐標(biāo)系中的兩個(gè)圖形與,給出如下定義:為圖形上任意一點(diǎn),為圖形上任意一點(diǎn),如果兩點(diǎn)間的距離有最小值,那么稱這個(gè)最小值為圖形間的“和睦距離”,記作,若圖形有公共點(diǎn),則.
(1)如圖(1),,,⊙的半徑為2,則 , ;
(2)如圖(2),已知的一邊在軸上,在上,且,,.
①是內(nèi)一點(diǎn),若、分別且⊙于E、F,且,判斷與⊙的位置關(guān)系,并求出點(diǎn)的坐標(biāo);
②若以為半徑,①中的為圓心的⊙,有,,直接寫(xiě)出的取值范圍 .
【答案】(1)2,;(2)①是⊙的切線,;②或.
【解析】
(1)根據(jù)圖形M,N間的“和睦距離”的定義結(jié)合已知條件求解即可.
(2)①連接DF,DE,作DH⊥AB于H.設(shè)OC=x.首先證明∠CBO=30,再證明DH=DE即可證明是⊙的切線,再求出OE,DE的長(zhǎng)即可求出點(diǎn)D的坐標(biāo).
②根據(jù),得到不等式組解決問(wèn)題即可.
(1)∵A(0,1),C(3,4),⊙C的半徑為2,
∴d(C,⊙C)=2,
d(O,⊙C)=AC2=,
故答案為2;;
(2)①連接,作于.設(shè).
∵,
∴,
解得,
∴,
∴,,
∵是⊙的切線,
∴平分,
∴,
∴,
∵,
∴,
∴,
∴是⊙的切線.
∵,
設(shè),
∵,
∴,
∴,,
∴,
∴,
②∵
∴B(0,)
∴BD=
由,,得
解得或
故答案為:或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A、B、C、D是⊙O上的四個(gè)點(diǎn),AD是⊙O的直徑,過(guò)點(diǎn)C的切線與AB的延長(zhǎng)線垂直于點(diǎn)E,連接AC、BD相交于點(diǎn)F.
(1)求證:AC平分∠BAD;
(2)若⊙O的半徑為,AC=6,求DF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,AC⊥AB,BC交⊙O于點(diǎn)D,點(diǎn)E在劣弧BD上,DE的延長(zhǎng)線交AB的延長(zhǎng)線于點(diǎn)F,連接AE交BD于點(diǎn)G.
(1)求證:∠AED=∠CAD;
(2)若點(diǎn)E是劣弧BD的中點(diǎn),求證:ED2=EGEA;
(3)在(2)的條件下,若BO=BF,DE=2,求EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,點(diǎn)C、D、B、F在一條直線上,且AB⊥BD,DE⊥BD,AB=CD,CE=AF.
求證:(1)△ABF≌△CDE;
(2)CE⊥AF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:三角形一邊上的點(diǎn)將該邊分為兩條線段,且這兩條線段的積等于這個(gè)點(diǎn)到該邊所對(duì)頂點(diǎn)連線的平方,則稱這個(gè)點(diǎn)為三角形該邊的“好點(diǎn)”.如圖1,△ABC中,點(diǎn)D是BC邊上一點(diǎn),連結(jié)AD,若,則稱點(diǎn)D是△ABC中BC邊上的“好點(diǎn)”.
(1)如圖2,△ABC的頂點(diǎn)是網(wǎng)格圖的格點(diǎn),請(qǐng)僅用直尺畫(huà)出AB邊上的一個(gè)“好點(diǎn)”.
(2)△ABC中,BC=9,,,點(diǎn)D是BC邊上的“好點(diǎn)”,求線段BD的長(zhǎng).
(3)如圖3,△ABC是的內(nèi)接三角形,OH⊥AB于點(diǎn)H,連結(jié)CH并延長(zhǎng)交于點(diǎn)D.
①求證:點(diǎn)H是△BCD中CD邊上的“好點(diǎn)”.
②若的半徑為9,∠ABD=90°,OH=6,請(qǐng)直接寫(xiě)出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四邊形ABCD中,E是對(duì)角線AC上一點(diǎn),DE=EC,以AE為直徑的⊙O與CD相切于點(diǎn)D,點(diǎn)B在⊙O上,連接OB.
(1)求證:DE=OE;
(2)若CD∥AB,求證:BC是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,O是AB邊上的點(diǎn),以O為圓心,OB為半徑的⊙0與AC相切于點(diǎn)D,BD平分∠ABC,AD=OD,AB=12,求CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知的半徑為 4,是圓的直徑,點(diǎn)是的切線上的一個(gè)動(dòng)點(diǎn),連接交于點(diǎn),弦平行于,連接.
(1)試判斷直線與的位置關(guān)系,并說(shuō)明理由;
(2)當(dāng)__________時(shí),四邊形為菱形;
(3)當(dāng)___________時(shí),四邊形為正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是長(zhǎng)為10m,傾斜角為30°的自動(dòng)扶梯,平臺(tái)BD與大樓CE垂直,且與扶梯AB的長(zhǎng)度相等,在B處測(cè)得大樓頂部C的仰角為65°,求大樓CE的高度(結(jié)果保留整數(shù)).(參考數(shù)據(jù):sin65°=0.90,tan65°=2.14)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com