【題目】已知:如圖1,在面積為3的正方形ABCD中,E、F分別是BC和CD邊上的兩點(diǎn),AEBF于點(diǎn)G,且BE=1.

(1)求證:ABE≌△BCF;

(2)求出ABE和BCF重疊部分(即BEG)的面積;

(3)現(xiàn)將ABE繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)到AB′E′(如圖2),使點(diǎn)E落在CD邊上的點(diǎn)E′處,問(wèn)ABE在旋轉(zhuǎn)前后與BCF重疊部分的面積是否發(fā)生了變化?請(qǐng)說(shuō)明理由.

【答案】(1)證明見解析(2)(3)沒(méi)有變化理由見解析

【解析】(1)證明:四邊形ABCD是正方形,∴∠ABE=BCF=90°,AB=BC。∴∠ABF+CBF=90°。

AEBF,∴∠ABF+BAE=90°。∴∠BAE=CBF。

ABE和BCF中,∵∠ABE=BCF,AB=BC,BAE=CBF,

∴△ABE≌△BCF(ASA)。

(2)解:正方形面積為3,AB=。

BGE與ABE中,∵∠GBE=BAE,EGB=EBA=90°,∴△BGE∽△ABE。

。

BE=1,AE2=AB2+BE2=3+1=4。

。

(3)解:沒(méi)有變化。理由如下:

AB=,BE=1,。∴∠BAE=30°。

AB′=AD,AB′E′=ADE'=90°,AE′= AE′,RtABERtAB′E′RtADE′,

∴∠DAE′=B′AE′=BAE=30°。

AB′與AE在同一直線上,即BF與AB′的交點(diǎn)是G。

設(shè)BF與AE′的交點(diǎn)為H,

BAG=HAG=30°,而AGB=AGH=90°,AG= AG,∴△BAG≌△HAG。

。

∴△ABE在旋轉(zhuǎn)前后與BCF重疊部分的面積沒(méi)有變化。

(1)由四邊形ABCD是正方形,可得ABE=BCF=90°,AB=BC,又由AEBF,由同角的余角相等,即可證得BAE=CBF,然后利用ASA,即可判定:ABE≌△BCF。

(2)由正方形ABCD的面積等于3,即可求得此正方形的邊長(zhǎng),由在BGE與ABE中,GBE=BAE,EGB=EBA=90°,可證得BGE∽△ABE,由相似三角形的面積比等于相似比的平方,即可求得答案。

(3)由正切函數(shù),求得BAE=30°,易證得RtABERtAB′E′RtADE′,可得AB′與AE在同一直線上,即BF與AB′的交點(diǎn)是G,然后設(shè)BF與AE′的交點(diǎn)為H,可證得BAG≌△HAG,從而證得結(jié)論

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)yax2+bx+ca≠0)的圖象如圖所示,則下列結(jié)論: abc0;② 2ab0; b24ac0;④ 9a+3b+c0; c+8a0.正確的結(jié)論有( 。.

A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過(guò)點(diǎn)OOEAB,交BCE.

(1)求證:ED為⊙O的切線;

(2)如果⊙O的半徑為,ED=2,延長(zhǎng)EO交⊙OF,連接DF、AF,求ADF的面積.

【答案】(1)證明見解析;(2)

【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質(zhì),易證得 即可得,則可證得的切線;
(2)連接CD,根據(jù)直徑所對(duì)的圓周角是直角,即可得 利用勾股定理即可求得的長(zhǎng),又由OEAB,證得根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得的長(zhǎng),然后利用三角函數(shù)的知識(shí),求得的長(zhǎng),然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

試題解析:(1)證明:連接OD,

OEAB

∴∠COE=CAD,EOD=ODA

OA=OD,

∴∠OAD=ODA,

∴∠COE=DOE,

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切線;

(2)連接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB,

AB=5,

AC是直徑,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面積為

型】解答
結(jié)束】
25

【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.

(1)求ba的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);

(2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求DMN的面積與a的關(guān)系式;

(3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對(duì)稱,現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,數(shù)軸上有點(diǎn)A、B,且點(diǎn)A表示﹣4,AB10

(1)點(diǎn)B表示的有理數(shù)為   

(2)一只小蟲從點(diǎn)A出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸正方向爬行到點(diǎn)C,點(diǎn)M、N分別是AC、BC的中點(diǎn).

若爬行4秒,則M表示數(shù)   N表示數(shù)   ;MN   

若爬行16秒,則M表示數(shù)   ;線段MN   

若爬行t秒,則線段MM   

發(fā)現(xiàn):點(diǎn)AB、C在同一直線上,點(diǎn)M、N分別是ACBC的中點(diǎn),已知MNa,則AB   (用含a的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線yx,點(diǎn)A1坐標(biāo)為(1,0),過(guò)點(diǎn)A1x軸的垂線交直線于點(diǎn)B1,以原點(diǎn)O為圓心,OB1長(zhǎng)為半徑畫弧交x軸于點(diǎn)A2;再過(guò)點(diǎn)A2x軸的垂線交直線于點(diǎn)B2,以原點(diǎn)O為圓心,OB2長(zhǎng)為半徑畫弧交x軸于點(diǎn)A3,,按此做法進(jìn)行下去,點(diǎn)A2019的坐標(biāo)為(  )

A. 22017,0B. 22018,0C. 22020,0D. 240340

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)銷售一批名牌襯衫,平均每天可銷售20件每件盈利40元.為了擴(kuò)大銷售,增加盈利,盡量減少庫(kù)存,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施.經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價(jià)5元,商場(chǎng)平均每天可多售出10件,求:

1)若商場(chǎng)每件襯衫降價(jià)10元,則商場(chǎng)每天可盈利多少元?

2)若商場(chǎng)平均每天要盈利1250元,每件襯衫應(yīng)降價(jià)多少元?

3)要使商場(chǎng)平均每天盈利1500元,可能嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校興趣小組就“最想去的漳州5個(gè)最美鄉(xiāng)村”隨機(jī)調(diào)查了本校部分學(xué)生. 要求每位同學(xué)選擇且只能選擇一個(gè)最想去的最美鄉(xiāng)村. 下面是根據(jù)調(diào)查結(jié)果繪制出的尚不完整統(tǒng)計(jì)表和統(tǒng)計(jì)圖,其中x、y是滿足x<y的正整數(shù).

最美鄉(xiāng)村意向統(tǒng)計(jì)表

最美鄉(xiāng)村

人數(shù)

A:龍海埭美村

10

B:華安官畬村

11

C:長(zhǎng)泰山重村

4x

D:南靖塔下村

9

E:東山澳角村

3y

最美鄉(xiāng)村意向扇形統(tǒng)計(jì)圖

根據(jù)以上信息,解答下列問(wèn)題:

(1)x、y的值;

(2)若該校有1200名學(xué)生,請(qǐng)估計(jì)“最想去華安官畬村”的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】列方程()解應(yīng)用題

打折前,買60A商品和30B商品用了1080元,買50A商品和10B商品用了840元.打折后,買500A商品和500B商品用了9600元,比不打折少花費(fèi)多少錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明在一次數(shù)學(xué)興趣小組活動(dòng)中,對(duì)一個(gè)數(shù)學(xué)問(wèn)題做如下探究:

(問(wèn)題背景)

如圖,在四邊形ADBC中,∠ACB=∠ADB90°,ADBD,探究線段AC、BCCD之間的數(shù)量關(guān)系.小明同學(xué)探究此問(wèn)題的思路是:將△BCD繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°到△AED處,點(diǎn)B、C分別落在點(diǎn)AE處(如圖),易證點(diǎn)C、AE在同一條直線上,并且△CDE是等腰直角三角形,所以CECD,從而得出結(jié)論:AC+BCCD

(簡(jiǎn)單應(yīng)用)

1)在圖中,若ACBC2,則CD   

2)如圖,ABO的直徑,點(diǎn)C、DO上,,若AB10,BC8,求CD的長(zhǎng).

(拓展延伸)

3)如圖,∠ACB=∠ADB90°,ADBD,若ACa,BCbab),求CD的長(zhǎng).(用含a,b的代數(shù)式表示).

4)如圖,∠ACB90°,ACBC,點(diǎn)PAB的中點(diǎn),若點(diǎn)E滿足AEAC,CECA,點(diǎn)QAE的中點(diǎn),請(qǐng)直接寫出線段PQAC的數(shù)量關(guān)系.

查看答案和解析>>

同步練習(xí)冊(cè)答案