【題目】如圖,已知拋物線(xiàn)y=﹣x+bx+c y軸相交于點(diǎn) A(0,3),與x正半軸相交于點(diǎn)B,對(duì)稱(chēng)軸是直線(xiàn) x=1

(1)求此拋物線(xiàn)的解析式以及點(diǎn)B的坐標(biāo).

(2)動(dòng)點(diǎn)M 從點(diǎn) O 出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿 x 軸正方向運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn) N 從點(diǎn)O出發(fā),以每秒 3 個(gè)單位長(zhǎng)度的速度沿y 軸正方向運(yùn)動(dòng),當(dāng)N點(diǎn)到達(dá) A 點(diǎn)時(shí),M、N同時(shí)停止運(yùn)動(dòng).過(guò)動(dòng)點(diǎn) M x 軸的垂線(xiàn)交線(xiàn)段 AB 于點(diǎn)Q,交拋物線(xiàn)于點(diǎn) P,設(shè)運(yùn)動(dòng)的時(shí)間為 t 秒.

當(dāng) t 為何值時(shí),四邊形 OMPN 為矩形.

當(dāng) t>0 時(shí),△BOQ 能否為等腰三角形?若能,求出 t 的值;若不能,請(qǐng)說(shuō)明理由.

【答案】(1)y=﹣x+2x+3,B點(diǎn)坐標(biāo)為(3,0);(2)①當(dāng)t的值為1時(shí),四邊形OMPN為矩形;當(dāng)t的值為時(shí),△BOQ 為等腰三角形

【解析】

(1)由對(duì)稱(chēng)軸公式可求得b,A點(diǎn)坐標(biāo)可求得C,則可求得拋物線(xiàn)解析式;再令y=0可求得B點(diǎn)坐標(biāo);

(2)①用t可表示出ONOM,則可表示出P點(diǎn)坐標(biāo),即可表示出PM的長(zhǎng),由矩形的性質(zhì)可得ON=PM,可得到關(guān)于的方程,可求得的值;②由題意可知OB=OA,故當(dāng)△BOQ為等腰三角形時(shí),只能有OB=BQOQ=BQ,t可表示出Q點(diǎn)的坐標(biāo),則可表示出OQBQ的長(zhǎng),分別得到關(guān)于t的方程,可求得t的值.

(1)∵拋物線(xiàn) y=﹣x+bx+c 對(duì)稱(chēng)軸是直線(xiàn) x=1,

∴﹣=1,解得 b=2,

拋物線(xiàn)過(guò) A(0,3),

∴c=3,

拋物線(xiàn)解析式為 y=﹣x+2x+3,

y=0 可得﹣x+2x+3=0,解得 x=﹣1 x=3,

∴B 點(diǎn)坐標(biāo)為(3,0);

(2)①由題意可知 ON=3t,OM=2t,

∵P 在拋物線(xiàn)上,

∴P(2t,﹣4t+4t+3),

四邊形 OMPN 為矩形,

∴ON=PM,

∴3t=﹣4t+4t+3,解得 t=1 t=﹣(舍去),

當(dāng) t 的值為 1 時(shí),四邊形 OMPN 為矩形;

②∵A(0,3),B(3,0),

∴OA=OB=3,且可求得直線(xiàn) AB 解析式為 y=﹣x+3,

當(dāng) t>0 時(shí),OQ≠OB,

當(dāng)△BOQ 為等腰三角形時(shí),有 OB=QB OQ=BQ 兩種情況, 由題意可知 OM=2t,

∴Q(2t,﹣2t+3),

∴OQ= =,BQ==|2t﹣3|, 又由題意可知 0<t<1,

當(dāng) OB=QB 時(shí),則有|2t﹣3|=3,解得 t=(舍去)或 t=;

當(dāng) OQ=BQ 時(shí),則有=|2t﹣3|,解得 t=;

綜上可知當(dāng) t 的值為 時(shí),△BOQ 為等腰三角形

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為1的正方形格中,每個(gè)小格的頂點(diǎn)叫格點(diǎn),以格點(diǎn)為頂點(diǎn)的三角形叫做格點(diǎn)三角形.已知中,,,

1)請(qǐng)你在圖中畫(huà)出格點(diǎn);(只畫(huà)一個(gè)即可)

2)判斷是否為直角三角形?并說(shuō)明理由;

3的面積為    

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正比例函數(shù)y=2x和反比例函數(shù)的圖象交于點(diǎn)A(m,﹣2).

(1)求反比例函數(shù)的解析式;

(2)觀察圖象,直接寫(xiě)出正比例函數(shù)值大于反比例函數(shù)值時(shí)自變量x的取值范圍;

(3)若雙曲線(xiàn)上點(diǎn)C(2,n)沿OA方向平移個(gè)單位長(zhǎng)度得到點(diǎn)B,判斷四邊形OABC的形狀并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中的位置如圖所示,其中每個(gè)小正方形的邊長(zhǎng)為1個(gè)單位長(zhǎng)度.按要求作圖:

1)畫(huà)出關(guān)于原點(diǎn)的中心對(duì)稱(chēng)圖形;

2)畫(huà)出將繞點(diǎn)順時(shí)針?lè)较蛐D(zhuǎn)90°得到的

3)設(shè)邊上一點(diǎn),在上與點(diǎn)對(duì)應(yīng)的點(diǎn)是.則點(diǎn)坐標(biāo)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在 Rt△ABC ∠C=90°,線(xiàn)段 AD 是線(xiàn)段 AB A 點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn) 90°得到的,△EGF △ABC 沿 CB 方向平移得到的,且直線(xiàn) EG 過(guò)點(diǎn) D.

(1)求∠BDF 的大;

(2) AB=10,BAC=30°,求 CF 的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,G是正六邊形ABCDEF的邊CD的中點(diǎn),連接AGCE于點(diǎn)M,則GM:MA=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線(xiàn)y=ax2-4ax+3a-2(a≠0)與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)).

(1)①求拋物線(xiàn)的對(duì)稱(chēng)軸;②求拋物線(xiàn)的頂點(diǎn)的縱坐標(biāo)(用含a的代數(shù)式表示).

(2)是否存在這樣的非零實(shí)數(shù)a,使得AB=2?若存在,求出a的值;若不存在,請(qǐng)說(shuō)明理由.

(3)當(dāng)AB≤4時(shí),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知在ADE中,∠ADE=90°,點(diǎn)BAE的中點(diǎn),過(guò)點(diǎn)DDCAE,DC=AB,連結(jié)BD、CE.

(1)求證:四邊形BDCE是菱形;

(2)若AD=8,BD=6,求菱形BDCE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】四邊形ABCD中,對(duì)角線(xiàn)AC、BD相交于點(diǎn)O,下列條件不能判定這個(gè)四邊形是平行四邊形的是

A.ABDC,ADBC  B.AB=DC,AD=BC

C.AO=CO,BO=DO   D.ABDC,AD=BC

查看答案和解析>>

同步練習(xí)冊(cè)答案