精英家教網(wǎng)如圖,⊙O中,直徑CD垂直于弦AB于E,AB=2,連接AC,BC,則tan∠ACB的值的倒數(shù)等于線段(  )
A、AC的長B、AE的長C、OE的長D、CE的長
分析:先利用垂徑定理求BE的長和∠CEB=∠FAB=90°,再解直角三角形即可.
解答:精英家教網(wǎng)解:如圖,連接BO并交于圓點F,
則∠ACB=∠F,BF是直徑.
由垂徑定理知,點E是AB的中點,BE=
AB
2
=1,∠CEB=∠FAB=90°,
∴CE∥FA,∠F=∠BOE.
∴tan∠ACB=tan∠F=tan∠BOE=
EB
OE
=
1
OE
,
∴tan∠ACB的值的倒數(shù)等于OE的長.
故選C.
點評:本題綜合考查了垂徑定理和圓周角的性質(zhì)、銳角三角函數(shù)的概念.解答這類題一些學生不會綜合運用所學知識解答問題,不知從何處入手造成錯解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,⊙O中,直徑AB=5,在它的不同側(cè)有定點C和動點P,BC:CA=4:3,點P在
AB
上運動(點P不與A、B重合),CP交AB于點D,過點C作CP的垂線,與PB的延長線交于點Q.
(1)當點P與點C關于AB對稱時,求CD和CQ的長;
(2)當點P運動到什么位置時,CQ取到最大值?求此時CQ的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

20、如圖,⊙O中,直徑CD⊥弦AB于E點,若CD=10,DE=2,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖:⊙O中,直徑AB⊥直徑CD,點E在OA上,EF⊥CE交BD于點F,EF交CD于M.CF交AB于N.
(1)求證:EC=EF;
(2)若AE=1,DM=
53
,求△ENC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖在⊙O中,直徑AB⊥弦CD,垂足為P,∠BAD=30°,則∠AOC的度數(shù)是
120
120
度.

查看答案和解析>>

同步練習冊答案