【題目】如圖,在平面直角坐標(biāo)系中,對(duì)角線為1的正方形OABC,點(diǎn)Ax軸的正半軸上,如果以對(duì)角線OB為邊作第二個(gè)正方形OBB1C1,再以對(duì)角線OB1為邊作第三個(gè)正方形OBlB2C2,照此規(guī)律作下去,則點(diǎn)B2019的坐標(biāo)為( 。

A.(﹣21009,21009B.21008,﹣21008

C.(﹣210090D.0,21008

【答案】C

【解析】

首先求出B1、B2、B3、B4、B5、B6、B7、B8、B9的坐標(biāo),找出這些坐標(biāo)的之間的規(guī)律,然后根據(jù)規(guī)律計(jì)算出點(diǎn)B2019的坐標(biāo).

∵正方形OABC對(duì)角線OB1,正方形OBB1C1是正方形OABC的對(duì)角線OB為邊,

OB1,

B1點(diǎn)坐標(biāo)為(0,),

同理可知OB22B2點(diǎn)坐標(biāo)為(﹣,),

同理可知OB32,B3點(diǎn)坐標(biāo)為(﹣2,0),

B4點(diǎn)坐標(biāo)為(﹣2,﹣2),B5點(diǎn)坐標(biāo)為(0,﹣4),

B64,﹣4),B78,0),

B888),B9016),

由規(guī)律可以發(fā)現(xiàn),每經(jīng)過8次作圖后,點(diǎn)的坐標(biāo)符號(hào)與第一次坐標(biāo)符號(hào)相同,每次正方形的邊長(zhǎng)變?yōu)樵瓉淼?/span>倍,

2019÷8252…3,

B2019的縱橫坐標(biāo)符號(hào)與點(diǎn)B3的相同,橫坐標(biāo)為負(fù)值,縱坐標(biāo)是0,

B2019的坐標(biāo)為(﹣21009,0).

故選C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為2,點(diǎn)O為其中心.將其繞點(diǎn)O順時(shí)針旋轉(zhuǎn)45°后得到正方形A'B'C'D',則旋轉(zhuǎn)前后兩正方形重疊部分構(gòu)成的多邊形的周長(zhǎng)為( 。▍⒖加(jì)算:

A.168B.1616C.128D.1612

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了美化環(huán)境,建設(shè)宜居成都,我市準(zhǔn)備在一個(gè)廣場(chǎng)上種植甲、乙兩種花卉,經(jīng)市場(chǎng)調(diào)查,甲種花卉的種植費(fèi)用y(元)與種植面積xm2)之間的函數(shù)關(guān)系如圖所示,乙種花卉的種植費(fèi)用為每平方米100元.

1)直接寫出當(dāng)0≤x≤300x300時(shí),yx的函數(shù)關(guān)系式;

2)廣場(chǎng)上甲、乙兩種花卉的種植面積共1200m2,若甲種花卉的種植面積不少于200m2,且不超過乙種花卉種植面積的2倍,那么應(yīng)該怎樣分配甲、乙兩種花卉的種植面積才能使種植總費(fèi)用最少?最少總費(fèi)用為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,D為直角ABC中斜邊AC上一點(diǎn),且ABAD,以AB為直徑的⊙OAD于點(diǎn)F,交BD于點(diǎn)E,連接BF,BF

1)求證:BEFE

2)求證:∠AFE=∠BDC

3)已知:sinBAEAB6,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,2分別是某款籃球架的實(shí)物圖與示意圖,ABBC于點(diǎn)B,底座BC1.3米,底座BC與支架AC所成的角∠ACB60°,點(diǎn)H在支架AF上,籃板底部支架EHBCEFEH于點(diǎn)E,已知AH米,HF米,HE1米.

1)求籃板底部支架HE與支架AF所成的∠FHE的度數(shù).

2)求籃板底部點(diǎn)E到地面的距離,(精確到0.01米)(參考數(shù)據(jù):≈1.41,≈1.73

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,

1)以BD為對(duì)角線,作菱形MBND,使得M、N分別在BA、DC的延長(zhǎng)線上.(保留作圖痕跡,不寫作圖過程)

2)證明所作四邊形MBND是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】附加題:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2

的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在星期一的第八節(jié)課,我校體育老師隨機(jī)抽取了九年級(jí)的總分學(xué)生進(jìn)行體育中考的模擬測(cè)試,并對(duì)成績(jī)進(jìn)行統(tǒng)計(jì)分析,繪制了頻數(shù)分布表和統(tǒng)計(jì)圖,按得分劃分成A、B、C、D、E、F六個(gè)等級(jí),并繪制成如下兩幅不完整的統(tǒng)計(jì)圖表.

 等級(jí)

 得分x(分)

 頻數(shù)(人)

 A

 95<x≤100

 4

 B

 90<x≤95

 m

 C

 85<x≤90

 n

 D

 80<x≤85

 24

 E

 75<x≤80

 8

 F

 70<x≤75

 4

請(qǐng)你根據(jù)圖表中的信息完成下列問題:

1)本次抽樣調(diào)查的樣本容量是   .其中m=   ,n=   

2)扇形統(tǒng)計(jì)圖中,求E等級(jí)對(duì)應(yīng)扇形的圓心角α的度數(shù);

3)我校九年級(jí)共有700名學(xué)生,估計(jì)體育測(cè)試成績(jī)?cè)?/span>A、B兩個(gè)等級(jí)的人數(shù)共有多少人?

4)我校決定從本次抽取的A等級(jí)學(xué)生(記為甲、乙、丙、丁)中,隨機(jī)選擇2名成為學(xué)校代表參加全市體能競(jìng)賽,請(qǐng)你用列表法或畫樹狀圖的方法,求恰好抽到甲和乙的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某消防隊(duì)在一居民樓前進(jìn)行演習(xí),消防員利用云梯成功救出點(diǎn)B處的求救者后,又發(fā)現(xiàn)點(diǎn)B正上方點(diǎn)C處還有一名求救者.在消防車上點(diǎn)A處測(cè)得點(diǎn)B和點(diǎn)C的仰角分別是45°65°,點(diǎn)A距地面2.5米,點(diǎn)B距地面10.5.為救出點(diǎn)C處的求救者,云梯需要繼續(xù)上升的高度BC約為多少米?(結(jié)果保留整數(shù).參考數(shù)據(jù):tan65°≈2.1,sin65°≈0.9,cos65°≈0.4,≈1.4)

查看答案和解析>>

同步練習(xí)冊(cè)答案