如圖所示,在平面上有過(guò)同一點(diǎn)P,并且半徑相等的n個(gè)圓,其中任何兩個(gè)圓都有兩個(gè)交點(diǎn),任何三個(gè)圓除P點(diǎn)外無(wú)其他公共點(diǎn),那么試問(wèn):
(1)這n個(gè)圓把平面劃分成多少個(gè)平面區(qū)域?
(2)這n個(gè)圓共有多少個(gè)交點(diǎn)?
解析:(1)在圖中,設(shè)以P點(diǎn)為公共點(diǎn)的圓有1,2,3,4,5個(gè)(取這n個(gè)特定的圓),觀察平面被它們所分割成的平面區(qū)域有多少個(gè)?為此,我們列出下表. 由表易知 S2-S1=2,S3-S2=3,S3-S3=4,S5-S4=5,…… 由此,不難推測(cè)Sn-Sn-1=n. 把上面(n-1)個(gè)等式左、右兩邊分別相加,就得到 Sn-S1=2+3+4+…+n, 因?yàn)镾1=2,所以 Sn=2+2+3+…+n=1+(1+2+3+…+n)
這就證明了當(dāng)n個(gè)圓過(guò)點(diǎn)P時(shí),可把平面劃分為個(gè)平面區(qū)域. 下面對(duì)Sn-Sn-1=n,即Sn=Sn-1+n的正確性略作說(shuō)明. 因?yàn)镾n-1為n-1個(gè)圓把平面劃分的區(qū)域數(shù),當(dāng)再加上一個(gè)圓,即當(dāng)n個(gè)圓過(guò)定點(diǎn)P時(shí),這個(gè)加上去的圓必與前n-1個(gè)圓相交,所以這個(gè)圓就被前n-1個(gè)圓分成n部分,加在Sn-1上,所以有Sn=Sn-1+n. (2)與(1)一樣,同樣用觀察、歸納、發(fā)現(xiàn)的方法來(lái)解決.為此,可列出下表. 由表容易發(fā)現(xiàn) a1=1, a2-a1=1,a3-a2=2,a4-a3=3,a5-a4=4,…… an-1-an-2=n-2,an-an-1=n-1. n個(gè)式子相加
所以,當(dāng)有滿足條件的n個(gè)圓過(guò)P點(diǎn)時(shí),這n個(gè)圓共有個(gè)交點(diǎn). |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:學(xué)習(xí)周報(bào) 數(shù)學(xué) 北師大八年級(jí)版 2009-2010學(xué)年 第19-26期 總第175-182期 北師大版 題型:044
在如圖所示的直角坐標(biāo)平面上,表示下列各點(diǎn):
(4,4),(1,4),(3,2),(8,2),(10,4),(4,4),(4,8),(8,7),(8,5),(4,6).(1)用線段依次按照上述順序把各點(diǎn)連接起來(lái)形成一個(gè)圖案,這個(gè)圖案像什么?
(2)把這些點(diǎn)的橫坐標(biāo)都加5,縱坐標(biāo)不變,想象由這些點(diǎn)順次連接形成的圖案與(1)中的圖案有什么關(guān)系?
(3)把題目中各點(diǎn)的橫坐標(biāo)不變,縱坐標(biāo)都乘以-1,重新在圖中描點(diǎn)、連線,得到的圖案與(1)中的圖案有什么關(guān)系?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2013屆四川新津縣棕新中學(xué)八年級(jí)下學(xué)期期中考試數(shù)學(xué)卷(解析版) 題型:填空題
如圖所示,在斜坡的頂部有一鐵塔AB,B是CD的中點(diǎn),CD是水平的,在陽(yáng)光的照射下,塔影DE留在坡面上.已知鐵塔底座寬CD=12米,塔影長(zhǎng)DE=18米,小明和小華的身高都是1.6米,同一時(shí)刻,小明站在點(diǎn)E處,影子在坡面上,小華站在平地上,影子也在平地上,兩人的影長(zhǎng)分別為2米和1米,那么塔高AB為 米。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com