(2013•蘇州)如圖,在矩形ABCD中,點E是邊CD的中點,將△ADE沿AE折疊后得到△AFE,且點F在矩形ABCD內(nèi)部.將AF延長交邊BC于點G.若
CG
GB
=
1
k
,則
AD
AB
=
k+1
2
k+1
2
用含k的代數(shù)式表示).
分析:根據(jù)中點定義可得DE=CE,再根據(jù)翻折的性質(zhì)可得DE=EF,AF=AD,∠AFE=∠D=90°,從而得到CE=EF,連接EG,利用“HL”證明Rt△ECG和Rt△EFG全等,根據(jù)全等三角形對應(yīng)邊相等可得CG=FG,設(shè)CG=a,表示出GB,然后求出BC,再根據(jù)矩形的對邊相等可得AD=BC,從而求出AF,再求出AG,然后利用勾股定理列式求出AB,再求比值即可.
解答:解:∵點E是邊CD的中點,
∴DE=CE,
∵將△ADE沿AE折疊后得到△AFE,
∴DE=EF,AF=AD,∠AFE=∠D=90°,
∴CE=EF,
連接EG,
在Rt△ECG和Rt△EFG中,
EG=EG
CE=EF
,
∴Rt△ECG≌Rt△EFG(HL),
∴CG=FG,
設(shè)CG=a,∵
CG
GB
=
1
k
,
∴GB=ka,
∴BC=CG+BG=a+ka=a(k+1),
在矩形ABCD中,AD=BC=a(k+1),
∴AF=a(k+1),
AG=AF+FG=a(k+1)+a=a(k+2),
在Rt△ABG中,AB=
AG2-BG2
=
[a(k+2)]2-(ka)2
=2a
k+1

AD
AB
=
a(k+1)
2a
k+1
=
k+1
2

故答案為:
k+1
2
點評:本題考查了矩形的性質(zhì),全等三角形的判定與性質(zhì),勾股定理的應(yīng)用,以及翻折變換的性質(zhì),熟記性質(zhì)并作輔助線構(gòu)造出全等三角形是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•蘇州)如圖,在一筆直的海岸線l上有AB兩個觀測站,A在B的正東方向,AB=2(單位:km).有一艘小船在點P處,從A測得小船在北偏西60°的方向,從B測得小船在北偏東45°的方向.
(1)求點P到海岸線l的距離;
(2)小船從點P處沿射線AP的方向航行一段時間后,到點C處,此時,從B測得小船在北偏西15°的方向.求點C與點B之間的距離.(上述兩小題的結(jié)果都保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•蘇州)如圖,在平面直角坐標(biāo)系中,四邊形OABC是邊長為2的正方形,頂點A、C分別在x,y軸的正半軸上.點Q在對角線OB上,且QO=OC,連接CQ并延長CQ交邊AB于點P.則點P的坐標(biāo)為
(2,4-2
2
(2,4-2
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•蘇州)如圖,AB是半圓的直徑,點D是
AC
的中點,∠ABC=50°,則∠DAB等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•蘇州)如圖,AB切⊙O于點B,OA=2,∠OAB=30°,弦BC∥OA,劣弧
BC
的弧長為
1
3
π
1
3
π
.(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•蘇州)如圖,在方格紙中,△ABC的三個頂點及D,E,F(xiàn),G,H五個點分別位于小正方形的頂點上.
(1)現(xiàn)以D,E,F(xiàn),G,H中的三個點為頂點畫三角形,在所畫的三角形中與△ABC不全等但面積相等的三角形是
△DFG或△DHF
△DFG或△DHF
(只需要填一個三角形)
(2)先從D,E兩個點中任意取一個點,再從F,G,H三個點中任意取兩個不同的點,以所取得這三個點為頂點畫三角形,求所畫三角形與△ABC面積相等的概率(用畫樹狀圖或列表格求解).

查看答案和解析>>

同步練習(xí)冊答案