【題目】設a,b是任意兩個實數(shù),規(guī)定a與b之間的一種運算“⊕”為:a⊕b=,

例如:1⊕(﹣3)==﹣3,(﹣3)⊕2=(﹣3)﹣2 =﹣5,

(x2+1)⊕(x﹣1)=(因為x2+1>0)

參照上面材料,解答下列問題:

(1)2⊕4=  ,(﹣2)⊕4=  ;

(2)若x>,且滿足(2x﹣1)⊕(4x2﹣1)=(﹣4)⊕(1﹣4x),求x的值.

【答案】(1) 2,﹣6.(2)3.

【解析】(1)2⊕4==2,

(﹣2)⊕4=﹣2﹣4=﹣6;

(2)∵x>,

∴(2x﹣1)⊕(4x2﹣1)=(﹣4)⊕(1﹣4x),

=﹣4﹣(1﹣4x),

=4x﹣5,

4x2﹣1=(4x﹣5)(2x﹣1),

4x2﹣1=4x2﹣14x+5,

2x2﹣7x+3=0,

(2x﹣1)(x﹣3)=0,

解得x1=,x2=3.

經(jīng)檢驗,x1=是增根,x2=3是原方程的解,

故x的值是3.

故答案為:2,﹣6.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某服裝商場購進一批T恤,每件進價40元,出于營銷考慮,要求每件售價不得低于40元且不得高于60元,在銷售過程中發(fā)現(xiàn)該T恤每周的銷售量(件)與每件售價(元)之間滿足一次函數(shù)關系:當銷售單價為44元時,銷量是72件,當銷售單價為48元時,銷售量為64.

1)請直接寫出的函數(shù)關系式;

2)當商場每周銷售這種T恤獲得350元的利潤時,每件的銷售單價是多少元?

3 設該商場每周銷售這種T恤所獲得的利潤為元,將該T恤銷售單價定為多少元時,才能使商場銷售該T恤所獲利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 如圖,RtABO的兩直角邊OA、OB分別在x軸的負半軸和y軸的正半軸上,O為坐標原點,A、B兩點的坐標分別為(,0)、(0,4),拋物線經(jīng)過B點,且頂點在直線上.

11)求拋物線對應的函數(shù)關系式;

22)若△DCE是由△ABO沿x軸向右平移得到的,當四邊形ABCD是菱形時,試判斷點C和點D是否在拋物線上,并說明理由;

33)若M點是CD所在直線下方拋物線上的一個動點,過點MMN平行于y軸交CD于點N設點M的橫坐標為t,MN的長度為llt之間的函數(shù)關系式,并求l取最大值時,點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AB分別交y軸、x軸于A、B兩點,OA=2,tanABO=,拋物線y=x2+bx+cA、B兩點.

(1)求直線AB和這個拋物線的解析式;

(2)設拋物線的頂點為D,求△ABD的面積;

(3)作垂直x軸的直線x=t,在第一象限交直線ABM,交這個拋物線于N.求當t取何值時,MN的長度l有最大值?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD的周長為36,對角線AC,BD相交于點O,點ECD的中點,BD=12,則△DOE的周長是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知以ABC的BC邊上一點O為圓心的圓,經(jīng)過A,B兩點,且與BC邊交于點E,D為弧BE的中點,連接AD交OE于點F,若AC=FC

(Ⅰ)求證:AC是O的切線;

(Ⅱ)若BF=5,DF=,求O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知△ABC中,ABAC,點D是△ABC外一點(與點A分別在直線BC兩側(cè)),且DBDC,過點DDEAC,交射線ABE,連接AEBCF

1)求證:AD垂直BC

2)如圖1,點E在線段AB上且不與B重合時,求證:DEAE;

3)如圖2,當點E在線段AB的延長線上時,寫出線段DE,AC,BE的數(shù)量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】今年五一節(jié)小明外出爬山,他從山腳爬到山頂?shù)倪^程中中途休息了一段時間設他從山腳出發(fā)后所用的時間為t分鐘),所走的路程為s),s與t之間的函數(shù)關系如圖所示,下列說法錯誤的是( )

A小明中途休息用了20分鐘

B小明休息前爬山的平均速度為每分鐘70米

C小明在上述過程中所走的路程為6600米

D小明休息前爬山的平均速度大于休息后爬山的平均速度

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】本題滿分10分已知關于x的方程

1求證方程有兩個不相等的實數(shù)根;

2是否存在實數(shù)m,使方程的兩個實數(shù)根互為相反數(shù)?若存在,求出m的值;若不存在,說明理由

查看答案和解析>>

同步練習冊答案