【題目】、乙兩位同學(xué)進(jìn)行長跑訓(xùn)練,甲和乙所跑的路程S(單位:米)與所用時(shí)間t(單位:秒)之間的函數(shù)圖象分別為線段OA和折線OBCD.則下列說法正確的是( )

A. 兩人從起跑線同時(shí)出發(fā),同時(shí)到達(dá)終點(diǎn)

B. 跑步過程中,兩人相遇一次

C. 起跑后160秒時(shí),甲、乙兩人相距最遠(yuǎn)

D. 乙在跑前300米時(shí),速度最慢

【答案】C

【解析】分析:根據(jù)函數(shù)圖象的性質(zhì)和圖象上的數(shù)據(jù)分析得出函數(shù)的類型和所需要的條件,結(jié)合實(shí)際意義得到正確的結(jié)論.

詳解:A.根據(jù)圖象可知甲乙到達(dá)終點(diǎn)的時(shí)間分別為160秒和200,所以甲比乙先到終點(diǎn),故本選項(xiàng)錯(cuò)誤;

B.由圖象可知,跑步過程中,兩人相遇兩次,故本選項(xiàng)錯(cuò)誤;

C.觀察圖象可知起跑后160秒時(shí),甲、乙兩人的路程差最大,甲、乙兩人相距最遠(yuǎn)故本選項(xiàng)正確;

D.由圖象可知乙在CD段的速度<在OB段的速度<在BC段的速度,故本選項(xiàng)錯(cuò)誤

故選C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,已知∠ABC∠ACB的平分線相交于點(diǎn)F,過點(diǎn)FDF∥BC,交AB于點(diǎn)D,交AC于點(diǎn)E,若BD=4,DE=9,則線段CE的長為( )

A.3B.4C.5D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】典典同學(xué)學(xué)完統(tǒng)計(jì)知識(shí)后,隨機(jī)調(diào)查了她家所在轄區(qū)若干名居民的年齡,將調(diào)查數(shù)據(jù)繪制成如下扇形和條形統(tǒng)計(jì)圖:

請(qǐng)根據(jù)以上不完整的統(tǒng)計(jì)圖提供的信息,解答下列問題:

(1)扇形統(tǒng)計(jì)圖中a=   ,b=   ;并補(bǔ)全條形統(tǒng)計(jì)圖;

(2)若該轄區(qū)共有居民3500人,請(qǐng)估計(jì)年齡在0~14歲的居民的人數(shù).

(3)一天,典典知道了轄區(qū)內(nèi)60歲以上的部分老人參加了市級(jí)門球比賽,比賽的老人們分成甲、乙兩組,典典很想知道甲乙兩組的比賽結(jié)果,王大爺告訴說,甲組與乙組的得分和為110,甲組得分不低于乙組得分的1.5倍,甲組得分最少為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過點(diǎn)OOEAB,交BCE.

(1)求證:ED為⊙O的切線;

(2)如果⊙O的半徑為,ED=2,延長EO交⊙OF,連接DF、AF,求ADF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料:

材料:我們知道,如果一個(gè)三角形的三邊長固定,那么這個(gè)三角形就固定。若給出任意一個(gè)三角形的三邊長,你能求出它的面積嗎?設(shè)一個(gè)三角形的三邊長分別為,,我們把它的面積記為,古希臘的幾何學(xué)家海倫(Hcron,約公元50年),在數(shù)學(xué)史上以解決幾何測量問題而聞名,在他的著作《度量》一書中,給出了一個(gè)通過三角形的三邊長來求面積的海倫公式。我們可以把海倫公式變形為:(其中

材料2:把形如的二次三項(xiàng)式(或其一部分)配成完全平方式的方法叫做配方法,配方法的基本形式是完全平方公式的逆寫,即.配方法是中學(xué)數(shù)學(xué)的重要方法,用配方法可求最最大(小)值.

例如:求的最小值.

當(dāng)時(shí),,此時(shí)取得最小值,

請(qǐng)你運(yùn)用材料提供的方法,解答以下問題:

1)若三角形的三邊長分別為,,,求該三角形的面積;

2)小新手里有一根長米的鐵絲,他想用這根鐵絲制作一個(gè)三角形模型,要求該三角形的一邊長為米且面積最大,請(qǐng)你幫助他計(jì)算出這個(gè)三角形另兩邊的邊長,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線軸,軸分別交于點(diǎn),B,與反比例函數(shù)圖象的一個(gè)交點(diǎn)為.

(1)求反比例函數(shù)的表達(dá)式;

(2)設(shè)直線 軸,軸分別交于點(diǎn)C,D,,直接寫出的值 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線PA是一次函數(shù)y=x+1的圖象,直線PB是一次函數(shù)y=-2x+2的圖象.

1)求AB、P三點(diǎn)的坐標(biāo);

2)求四邊形PQOB的面積;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一元二次方程ax2+bx+c=0(a≠0)中,下列說法:

①若a+b+c=0,則b2﹣4ac>0;

②若方程兩根為﹣12,則2a+c=0;

③若方程ax2+c=0有兩個(gè)不相等的實(shí)根,則方程ax2+bx+c=0必有兩個(gè)不相等的實(shí)根;

④若b=2a+c,則方程有兩個(gè)不相等的實(shí)根.其中正確的有( 。

A. ①②③ B. ①②④ C. ②③④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)的圖象交于點(diǎn)A1,6),B3,n)兩點(diǎn).

1)求一次函數(shù)的表達(dá)式;

2)在y軸上找一點(diǎn)P,使PA+PB的值最小,求滿足條件的點(diǎn)P的坐標(biāo)及PAB的面積.

查看答案和解析>>

同步練習(xí)冊答案